Skip to main content

Physiological Basis of Plant Nutrient Use Efficiency – Concepts, Opportunities and Challenges for Its Improvement

  • Chapter
  • First Online:

Part of the book series: Plant Ecophysiology ((KLEC,volume 10))

Abstract

Knowledge on the underlying physiological processes and variables which bias their contribution to nutrient use efficiency (NUE) is crucial to develop strategies for improvement in agroecosystems. This chapter aims to contribute to the understanding of the physiological basis of NUE to develop strategies for improvement by modern breeding, but also conceive the challenges and current limits to do so. General concepts will be summarized briefly and broken down to the main components before, in the main part of this chapter, the involved physiological processes are reviewed and discussed in their relation to NUE. This is followed by an identification of the factors that make the individual contributions of these processes to NUE so variable and impede one general concept for all crops, environmental conditions and nutrients. The last part of the chapter is dedicated to a critical analysis of the opportunities and challenges to improve NUE, which arise from physiological interactions and trade-offs on a whole plant level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    CAS  PubMed  Google Scholar 

  • Aerts R (1990) Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 84:391–397

    Google Scholar 

  • Aerts R (1997) Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposibility? Oikos 80:603–606

    Google Scholar 

  • Aerts R, Chapin FS III (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Google Scholar 

  • Ågren GI (1985) Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64:17–28

    Google Scholar 

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric Forest Meteorol 122:85–94

    Google Scholar 

  • Allard RW (1999) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Barbottin A, Lecomte C, Bouchard C, Jeuffroy MH (2005) Nitrogen remobilization during grain filling in wheat. Crop Sci 45:1141–1150

    Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Science 333:416–417

    CAS  PubMed  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Berendse F, Oudhof H, Bol J (1987) A comparative study on nutrient cycling in wet heathland ecosystems. Oecologia 74:174–184

    Google Scholar 

  • Berendse F, Elberse WT, Geerts RHME (1992) Competition and nitrogen loss from plants in grassland ecosystems. Ecology 73:46–53

    Google Scholar 

  • Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67:69–79

    Google Scholar 

  • Bloom AJ (1985) Wild and cultivated barleys show similar affinities for mineral nitrogen. Oecologia 65:555–557

    Google Scholar 

  • Borlaug NE (1972) The green revolution, peace, and humanity. Speech delivered upon receipt of the 1970 Nobel Peace Prize. CIMMYT reprint and translation series No. 3. Centro Internacional de Mejoramiento de Maiz y Trigo, El Batan, Mexico

    Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crop Res 86:131–146

    Google Scholar 

  • Bot JL, Kirkby EA (1992) Diurnal uptake of nitrate and potassium during the vegetative growth of tomato plants. J Plant Nutr 15:247–264

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Brown RH (1978) A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution. Crop Sci 18:93–98

    CAS  Google Scholar 

  • Browne CA (1942) Liebig and the law of the minimum. In: Moulton FA (ed) Liebig and after Liebig. A century of progress in agricultural chemistry. American Association for the Advancement of Science, Washington, DC, pp 71–82

    Google Scholar 

  • Buljovcic Z, Engels C (2001) Nitrate uptake ability by maize roots during and after drought stress. Plant Soil 229:125–135

    CAS  Google Scholar 

  • Cabrera-Bosquet L, Molero G, Bort J, Nogués S, Araus JL (2007) The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants. Ann Appl Biol 151:277–289

    CAS  Google Scholar 

  • Cassman KG, Kropff MJ, Gaunt J, Peng S (1993) Nitrogen use efficiency of rice reconsidered: what are the key constraints? Plant Soil 155:359–362

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    CAS  Google Scholar 

  • Chapin FS III (1991) Integrated responses of plants to stress. Bioscience 41:29–36

    Google Scholar 

  • Chapin FS III, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391

    CAS  Google Scholar 

  • Chapin FS III, Moilanen L (1991) Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology 72:709–715

    Google Scholar 

  • Chapin FS III, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    CAS  PubMed  Google Scholar 

  • Clarkson DT, Saker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulphate status. Evidence of co-regulation of nitrogen and sulphate intake. J Exp Bot 40:953–963

    CAS  Google Scholar 

  • Costanza R, d’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island, Washington, DC

    Google Scholar 

  • Daily GC, Söderqvist T, Aniyar S, Arrow K, Dasgupta P, Ehrlich PR, Folke C, Jansson A, Jansson B-O, Kautsky N, Levin S, Lubchenco J, Mäler K-G, Simpson D, Starrett D, Tilman D, Walker B (2000) Ecology. The value of nature and the nature of value. Science 289:395

    CAS  PubMed  Google Scholar 

  • De Kok LJ, Stuiver CEE, Westerman S, Stulen I (2002) Elevated levels of hydrogen sulfide in the plant environment: nutrient or toxin. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and biotechnology in plants. Springer, Tokyo, pp 201–213

    Google Scholar 

  • De Kok LJ, Durenkamp M, Yang L, Stulen I (2007) Atmospheric sulfur. In: Hawkesford MJ, De Kok LJ (eds) Sulfur in plants – an ecological perspective. Springer, Dordrecht, pp 91–106

    Google Scholar 

  • Delhon P, Gojon A, Tillard P, Passama L (1995) Diurnal regulation of NO3 uptake in soybean plants I. Changes in NO3 influx, efflux, and N utilization in the plant during the day/night cycle. J Exp Bot 46:1585–1594

    CAS  Google Scholar 

  • Donald CM, Hamblin J (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv Agron 28:361–405

    Google Scholar 

  • Eckstein RL, Karlsson PS (1997) Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species. Oikos 79:311–324

    Google Scholar 

  • Ehdaie B, Merhaut DJ, Ahmadian S, Hoops AC, Khuong T, Layne AP, Waines JG (2010) Root system size influences water‐nutrient uptake and nitrate leaching potential in wheat. J Agron Crop Sci 196:455–466

    Google Scholar 

  • Eichert T, Fernández V (2012) Uptake and release of elements by leaves and other aerial plant parts. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic, Oxford, UK, pp 71–84

    Google Scholar 

  • Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91:880–889

    Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Evans LT, Dunstone RL (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–742

    Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and significance. Crop Sci 39:1544–1551

    Google Scholar 

  • Faller N (1972) Schwefeldioxid, Schwefelwasserstoff, nitrose Gase und Ammoniak als ausschließliche S- bzw. N-Quellen der höheren Pflanze. J Plant Nutr Soil Sci 131:120–130

    CAS  Google Scholar 

  • Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia 56:341–347

    Google Scholar 

  • Field C, Merino J, Mooney HA (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–389

    Google Scholar 

  • Forieri I, Wirtz M, Hell R (2013) Towards new perspectives on the interaction of iron and sulfur metabolism in Arabidopsis thaliana. Front Plant Sci 4:357

    PubMed Central  PubMed  Google Scholar 

  • Foulkes MJ, Slafer GA, Davies WJ, Berry PM, Sylvester-Bradley R, Martre P, Calderini DF, Griffiths R, Reynolds MP (2011) Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J Exp Bot 62:469–486

    CAS  PubMed  Google Scholar 

  • Francis C, Lieblein G, Gliessman S, Breland TA, Creamer N, Harwood R, Salomonsson L, Helenius J, Rickerl D, Salvador R, Wiedenhoeft M, Simmons S, Allen P, Altieri M, Flora C, Poincelot R (2003) Agroecology: the ecology of food systems. J Sustain Agric 22:99–118

    Google Scholar 

  • Franklin O, McMurtie ROSS, Iversen CM, Crous KY, Finzi AC, Tissue DT, Ellsworth DS, Oren R, Norby RJ (2009) Forest fine‐root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob Change Biol 15:132–144

    Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci U S A 96:1175–1180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garg BK, Burman U, Kathju S (2004) The influence of phosphorus nutrition on the physiological response of moth bean genotypes to drought. J Plant Nutr Soil Sci 167:503–508

    CAS  Google Scholar 

  • Gerloff GC (1963) Comparative mineral nutrition of plants. Annu Rev Plant Physiol 14:107–124

    CAS  Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743

    Google Scholar 

  • Gliessman SR (1990) Agroecology: researching the ecological basis for sustainable agriculture. Springer, New York

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gross A, Brückner G, Heldt HW, Flügge UI (1990) Comparison of the kinetic properties, inhibition and labelling of the phosphate translocators from maize and spinach mesophyll chloroplasts. Planta 180:262–271

    CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J Exp Bot 51:131–138

    CAS  PubMed  Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MA (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Google Scholar 

  • Haydon MJ, Bell LJ, Webb AA (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62:2333–2348

    CAS  PubMed  Google Scholar 

  • Haynes RJ, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53:465–510

    CAS  Google Scholar 

  • Hirose T, Bazzaz FA (1998) Trade-off between light-and nitrogen-use efficiency in canopy photosynthesis. Ann Bot 82:195–202

    Google Scholar 

  • Ingestad T (1988) A fertilization model based on the concepts of nutrient flux density and nutrient productivity. Scand J Forest Res 3:157–173

    Google Scholar 

  • Janssen BH (1998) Efficient use of nutrients: an art of balancing. Field Crop Res 56:197–201

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Koralewska A, Buchner P, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2009) Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. J Plant Physiol 166:168–179

    CAS  PubMed  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    CAS  Google Scholar 

  • Kraus H (2006) Die Atmosphäre der Erde: Eine Einführung in die Meteorologie. (The atmosphere of the earth: an introduction to meteorology). Springer, Berlin/Heidelberg, p 23

    Google Scholar 

  • Kurzweil R (2001) The law of accelerating returns. Retrieved from www.kurzweilai.net in 2013

  • Lajtha K (1987) Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea tridentata (DC.) Cov. Biogeochemistry 4:265–276

    Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Larcher W (1995) Plant physiological ecology, 3rd edn. Springer, Berlin

    Google Scholar 

  • Leegood RC (2002) C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J Exp Bot 53:581–590

    CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    CAS  PubMed  Google Scholar 

  • Loomis RS, Amthor JS (1999) Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Sci 39:1584–1596

    CAS  Google Scholar 

  • Marschner H (2012) In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic, Oxford, UK

    Google Scholar 

  • Mazoyer M, Roudart L (2006) A history of world agriculture: from the neolithic age to the current crisis. Monthly Review Press, New York

    Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, Bern

    Google Scholar 

  • Meuleman AF, Beekman JHP, Verhoeven JT (2002) Nutrient retention and nutrient-use efficiency in Phragmites australis stands after waster water application. Wetlands 22:712–721

    Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Google Scholar 

  • Moore GE (1975) Progress in digital integrated electronics. IEEE, international electron devices meeting, IEDM Tech. Digest 1975, pp 11–13

    Google Scholar 

  • Nardoto GB, da Cunha Bustamante MM, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201

    Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade‐tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Google Scholar 

  • Ntanos DA, Koutroubas SD (2002) Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crop Res 74:93–101

    Google Scholar 

  • Oenema O, Witzke HP, Klimont Z, Lesschen JP, Velthof GL (2009) Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric Ecosyst Environ 133:280–288

    CAS  Google Scholar 

  • Paez-Valencia J, Sanchez-Lares J, Marsh E, Dorneles LT, Santos MP, Sanchez D, Winter A, Murphy S, Cox J, Trzaska M, Metler J, Kozic A, Facanha AR, Schachtman D, Sanchez C, Gaxiola RA (2013) Enhanced proton translocating pyrophosphatase activity improves nitrogen use efficiency in romaine lettuce. Plant Physiol 161:1557–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paolacci AR, Celletti S, Catarcione G, Hawkesford MJ, Astolfi S, Ciaffi M (2013) Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato (Solanum lycopersicum L.) seedlings. J Integr Plant Biol 56. Early View Online Version

    Google Scholar 

  • Parry MA, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu XG, Price GD, Condon AG, Furbank RT (2011) Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot 62:453–467

    CAS  PubMed  Google Scholar 

  • Patterson TB, Guy RD, Dang QL (1997) Whole-plant nitrogen-and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia 110:160–168

    Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce FJ, Nowak P (1999) Aspects of precision agriculture. Adv Agron 67:1–85

    Google Scholar 

  • Poorter H, Remkes C, Lambers H (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94:621–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasnick M (1970) Effect of mannitol and polyethylene glycol on phosphorus uptake by maize plants. Ann Bot 34:497–502

    Google Scholar 

  • Reich PB, Walters MB, Tabone TJ (1989) Response of Ulmus americana seedlings to varying nitrogen and water status. 2 Water and nitrogen use efficiency in photosynthesis. Tree Physiol 5:173–184

    CAS  PubMed  Google Scholar 

  • Ren Y, He X, Liu D, Li J, Zhao X, Li B, Tong Y, Zhang A, Li Z (2012) Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breed 30:139–148

    Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49

    Google Scholar 

  • Reynolds MP, Manes Y, Izanloo A, Langridge P (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    CAS  PubMed  Google Scholar 

  • Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci Soc Am J 35:301–306

    CAS  Google Scholar 

  • Rose TJ, Pariasca-Tanaka J, Rose MT, Fukuta Y, Wissuwa M (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119:154–160

    Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919

    CAS  PubMed  Google Scholar 

  • Rossato L, Laine P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52:1655–1663

    CAS  PubMed  Google Scholar 

  • Russell EJ (1966) A history of agricultural science in great Britain 1620–1954. George Allen & Unwin, London

    Google Scholar 

  • Sadras VO, Rodriguez D (2010) Modelling the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency of wheat in eastern Australia. Field Crop Res 118:297–305

    Google Scholar 

  • Saurbeck DC, Helal HM (1990) Factors affecting the nutritional efficiency of plants. In: Bassam NEL, Dambroth M, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht, pp 361–372

    Google Scholar 

  • Schnug E, Haneklaus S (1998) Diagnosis of sulphur nutrition. In: Schnug E (ed) Sulphur in agroecosystems. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Shangguan ZP, Shao MA, Dyckmans J (2000) Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot 44:141–149

    CAS  PubMed  Google Scholar 

  • Shea PF, Gerloff GC, Gabelman WH (1968) Differing efficiencies of potassium utilization in strains of Snapbeans, Phaseolus vulgaris L. Plant Soil 28:337–346

    CAS  Google Scholar 

  • Siddiqi MY, Glass AD (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302

    Google Scholar 

  • Silla F, Escudero A (2004) Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels. Funct Ecol 18:511–521

    Google Scholar 

  • Smika D, Haas H, Power W (1965) Effects of moisture and nitrogen fertilizer on growth and water use by native grass. Agron J 57:483–486

    Google Scholar 

  • Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179

    CAS  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    CAS  PubMed  Google Scholar 

  • Stafford JV (2000) Implementing precision agriculture in the 21st century. J Agric Eng Res 76:267–275

    Google Scholar 

  • Steingröver E, Woldendorp J, Sijtsma L (1986) Nitrate accumulation and its relation to leaf elongation in spinach leaves. J Exp Bot 181:1093–1102

    Google Scholar 

  • Stulen I, De Kok LJ (2012) Exploring interactions between sulfate and nitrate uptake at a whole plant level. In: De Kok LJ, Tausz M, Hawkesford MJ, Hoefgen R, McManus MT, Norton RM, Rennenberg H, Saito K, Schnug E, Tabe L (eds) Sulfur metabolism in plants: mechanisms and application to food security, and responses to climate change. Springer, Dordrecht, pp 1–8

    Google Scholar 

  • Stulen I, Perez-Soba M, De Kok LJ, Van der Eerden L (1998) Impact of gaseous nitrogen deposition on plant functioning. New Phytol 139:61–70

    CAS  Google Scholar 

  • Swiader JM, Chyan Y, Freiji FG (1994) Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J Plant Nutr 17:1687–1699

    CAS  Google Scholar 

  • Thompson RP (2011) Agro-technology: a philosophical introduction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    CAS  PubMed  Google Scholar 

  • Tindall JA, Mills HA, Radcliffe DE (1990) The effect of root zone temperature on nutrient uptake of tomato. J Plant Nutr 13:939–956

    CAS  Google Scholar 

  • Tour RS (1920) The direct synthetic ammonia process. Ind Eng Chem Res 12:844–852

    CAS  Google Scholar 

  • Turner LB (1985) Changes in the phosphorus content of Capsicum annuum leaves during water-stress. J Plant Physiol 121:429–439

    CAS  Google Scholar 

  • Van der Werf A, Van Nuenen M, Visser AJ, Lambers H (1993) Contribution of physiological and morphological plant traits to a species’ competitive ability at high and low nitrogen supply. Oecologia 94:434–440

    Google Scholar 

  • Vázquez de Aldana BR, Berendse F (1997) Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Funct Ecol 11:619–626

    Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible W-A, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320

    CAS  PubMed  Google Scholar 

  • Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Google Scholar 

  • Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324:1519

    CAS  PubMed  Google Scholar 

  • Watanabe N, Evans JR, Chow WS (1994) Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Funct Plant Biol 21:169–183

    CAS  Google Scholar 

  • Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433–441

    Google Scholar 

  • Weih M, Asplund L, Bergkvist G (2011) Assessment of nutrient use in annual and perennial crops: a functional concept for analyzing nitrogen use efficiency. Plant Soil 339:513–520

    CAS  Google Scholar 

  • Westerman S, De Kok LJ, Stuiver CEE, Stulen I (2000) Interaction between metabolism of atmospheric H2S in the shoot and sulfate uptake by the roots of curly kale (Brassica oleracea). Physiol Plant 109:443–449

    CAS  Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39:425–432

    CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Google Scholar 

  • White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Ann Bot 112:207–222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Bao W, Li F, Wu N (2008) Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environ Exp Bot 63:248–255

    CAS  Google Scholar 

  • Yasumura Y, Hikosaka K, Matsui K, Hirose T (2002) Leaf-level nitrogen-use efficiency of canopy and understorey species in a beech forest. Funct Ecol 16:826–834

    Google Scholar 

  • Yuan ZY, Li LH, Huang JH, Han XG, Wam SQ (2005) Effect of nitrogen supply on the nitrogen use efficiency of an annual herb, Helianthus annuus L. J Integr Plant Biol 47:539–548

    Google Scholar 

  • Yuan ZY, Chen HY, Li LH (2008) Nitrogen use efficiency: does a trade-off exist between the N productivity and the mean residence time within Species? Aust J Bot 56:272–277

    CAS  Google Scholar 

  • Zelitch I (1982) The close relationship between net photosynthesis and crop yield. Bioscience 32:796–802

    Google Scholar 

  • Zhang FS, Römheld V, Marschner H (1991) Diurnal rhythm of release of phytosiderophores and uptake rate of zinc in iron-deficient wheat. Soil Sci Plant Nutr 37:671–678

    CAS  Google Scholar 

  • Zhang N, Wang M, Wang N (2002) Precision agriculture – a worldwide overview. Comput Electron Agric 36:113–132

    Google Scholar 

  • Zhang LX, Li SX, Zhang H, Liang ZS (2007) Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Agron Crop Sci 193:387–397

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luit J. De Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reich, M., Aghajanzadeh, T., De Kok, L.J. (2014). Physiological Basis of Plant Nutrient Use Efficiency – Concepts, Opportunities and Challenges for Its Improvement. In: Hawkesford, M., Kopriva, S., De Kok, L. (eds) Nutrient Use Efficiency in Plants. Plant Ecophysiology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-10635-9_1

Download citation

Publish with us

Policies and ethics