Enzymatic Reactions in Supercritical Fluids

  • Željko KnezEmail author
  • Maja Leitgeb
  • Mateja Primožič
Part of the Food Engineering Series book series (FSES)


Supercritical fluids and dense gases are a unique class of non-aqueous media with many features that make their use as solvents for biocatalysis and separation particularly desirable. The advantages of supercritical fluids as solvents fall into four general categories: environmental, process, chemical and health/safety. Other attractive features of supercritical fluids as solvents for biocatalytic processes include their high diffusivities, low toxicity and environmental impact, easy downstream processing and recyclability. Application of dense gases as “green solvents” for biochemical reactions is not yet realized on industrial scale. The reason might be instability and deactivation of enzymes under pressure and temperature.

The Chapter outlines the main factors influencing enzyme activity and stability and the process parameters impact on reaction rates and productivity, on application of various types of reactors, and on limitations of enzymes applications as biocatalyst in supercritical fluids. Future trends of development are presented as well.


Supercritical fluids Enzymatic reaction Enzyme Biocatalysis Enzyme stability Enzyme activity High pressure reactors Transesterification 


  1. Aaltonen O (1999) Enzymatic catalysis. In: Jessop PG, Leiner W (eds) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim, pp 414–445Google Scholar
  2. Aaltonen A, Rantakyla M (1991) Biocatalysis in supercritical CO2. Chemtech 21(4):240–248Google Scholar
  3. Affleck R, Xu ZF, Suzawa V et al (1992) Enzymatic catalysis and dynamics in low-water environments. Proc Natl Acad Sci U S A 89(3):1100–1104CrossRefGoogle Scholar
  4. Ahern TJ, Klibanov AM (1985) The mechanism of irreversible enzyme inactivation at 100-degrees-C. Science 228(4705):1280–1284CrossRefGoogle Scholar
  5. Almeida MC, Ruivo R, Maia C et al (1998) Novozym 435 activity in compressed gases. Water activity and temperature effects. Enzyme Microb Technol 22:494–499CrossRefGoogle Scholar
  6. Antonini E, Carrea G, Cremonesi P (1981) Enzyme catalyzed reactions in water-organic solvent two-phase systems. Enzyme Microb Technol 3(4):291–296CrossRefGoogle Scholar
  7. Asano Y (2002) Overview of screening for new microbial catalysts and their uses in organic synthesis—selection and optimization of biocatalysts. J Biotechnol 94(1):65–72CrossRefGoogle Scholar
  8. Bártlová M, Bernášek P, Sýkora J et al (2006) HPLC in reversed phase mode: tool for investigation of kinetics of blackcurrant seed oil lipolysis in supercritical carbon dioxide. J Chromatogr B 839:80–84CrossRefGoogle Scholar
  9. Basheer S, Mogi K, Nakajima M (1995) Surfactant-modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnol Bioeng 45(3):187–195CrossRefGoogle Scholar
  10. Bauza R, Rios A, Valcarcel M (2002) Coupling immobilized enzymes flow reactors with supercritical fluid extraction for analytical purposes. Analyst 127(2):241–247CrossRefGoogle Scholar
  11. Bell G, Janssen AEM, Halling PJ (1997) Water activity fails to predict critical hydration level for enzyme activity in polar organic solvents: interconversion of water concentrations and activities. Enzyme Microb Technol 20:471–477CrossRefGoogle Scholar
  12. Blanchard LA, Hancu D, Beckman EJ et al (1999) Green processing using ionic liquids and CO2. Nature 399(6731):28–29CrossRefGoogle Scholar
  13. Bornscheuer UT (2000) Enzymes in lipid modification. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  14. Bourquelot E, Bridel MJ (1913) Synthtse des glucosides d’alcools. B. l’aide de l’tmulsine et reversibilitt des actions fermentaires. Annales de chimie et de physique 29:145–218Google Scholar
  15. Capewell A, Wendel V, Bornscheuer UT et al (1996) Lipase-catalyzed kinetic resolution of 3-hydroxy esters in organic solvents and supercritical carbon dioxide. Enzyme Microb Technol 19(3):181–186CrossRefGoogle Scholar
  16. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angewandte Chemie-International Edition 39(13):2226–2254CrossRefGoogle Scholar
  17. Castillo E, Marty A, Combes D et al (1994) Polar substrates for enzymatic-reactions in supercritical CO2—how to overcome the solubility limitation. Biotechnol Lett 16(2):169–174Google Scholar
  18. Catoni E, Cernia E, Palocci C (1996) Different aspects of ‘solvent engineering’ in lipase biocatalysed esterifications. J Mol Catal A: Chem 105(1–2):79–86CrossRefGoogle Scholar
  19. Celia EC, Cernia E, D’Acquarica I et al (1999) High yield and optical purity in biocatalysed acylation of trans-2- phenyl-1-cyclohexanol with Candida rugosa lipase in non-conventional media. J Mol Catal B: Enzymatic 6(5):495–503CrossRefGoogle Scholar
  20. Cernia E, Palocci C, Gasparrini F et al (1994) Enantioselectivity and reactivity of immobilized lipase in supercritical carbon dioxide. J Mol Catal 89(1–2):L11–L18CrossRefGoogle Scholar
  21. Cheftel JC (1991) Applications des hautes pressions en technologie alimentaire. IAA 108:141–153Google Scholar
  22. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021CrossRefGoogle Scholar
  23. Chulalaksananukul W, Condoret JS, Combes D (1993) Geranyl acetate synthesis by lipase-catalyzed transesterification in supercritical carbon-dioxide. Enzyme Microb Technol 15(8):691–698CrossRefGoogle Scholar
  24. Coleman MH, Macrae AR (1977) German Patent DE 27 05 608 [Unilever]Google Scholar
  25. Collins AN, Sheldrake GN, Crosby J (1992) Chirality in industry. Wiley, ChichesterGoogle Scholar
  26. Dastoli FR, Price S (1967) Further studies on xanthine oxidase in nonpolar media. Arch Biochem Biophys 122(2):289–291CrossRefGoogle Scholar
  27. De Carvalho IB, De Sampaio TC, Barreiros S (1994) Subtilisin hydration and activity in supercritical and near-critical fluids. Presented at Proceedings of 3rd symposium on supercritical fluids, Strasbourg, October 17–19, p 155Google Scholar
  28. Debs-Louka E, Louka N, Abraham G et al (1999) Effect of compressed carbon dioxide on microbial cell viability. Appl Environ Microbiol 65:626–631Google Scholar
  29. Demirjan DC, Shah PC, Moris-Varas F (1999) Screening for novel enzymes. Top Curr Chem 200:1–29CrossRefGoogle Scholar
  30. Dijkstra ZJ, Merchant R, Keurentjes JTF (2007) Stability and activity of enzyme aggregates of Calb in supercritical CO2. J Supercrit Fluids 41(1):102–108CrossRefGoogle Scholar
  31. Dordick JS (1989) Enzymatic catalysis in monophasic organic-solvents. Enzyme Microb Technol 11(4):194–211CrossRefGoogle Scholar
  32. Dufour E, Hervé G, Halrtle T (1995) Hydrolysis of β-lactoglobulin by thermolysin and pepsin under high hydrostatic pressure. Biopolymers 35:475–483CrossRefGoogle Scholar
  33. Erickson JC, Schyns P, Cooney CL (1990) Effect of pressure on an enzymatic reaction in a supercritical fluid. AIChE J 36:299–301CrossRefGoogle Scholar
  34. Erkmen O (2003) Mathematical modeling of Saccharomyces cerevisiae inactivation under high-pressure carbon dioxide. Nahrung/Food 47:176–180CrossRefGoogle Scholar
  35. Faber K (2000) Biotransformations in organic chemistry, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  36. Findrik Z, Vasić-Rački D, Primožič M et al (2005) Enzymatic activity of L-amino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatal Biotransfor 23(5):315–321CrossRefGoogle Scholar
  37. Fontes N, Nogueiro E, Elvas AM et al (1998) Effect of pressure on the catalytic activity of subtilisin Carlsberg suspended in compressed gases. Biochim Biophys Acta, Protein Struct Mol Enzymol 1383(1):165–174CrossRefGoogle Scholar
  38. Fontes N, Partridge J, Hailing PJ et al (2002) Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media. Biotechnol Bioeng 77(3):296–305CrossRefGoogle Scholar
  39. Gang Y, Yong X, Wei X et al (2007) Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a). J Ind Microbiol Biotechnol 34:793–798CrossRefGoogle Scholar
  40. Glowacz G, Bariszlovich M, Linke M et al (1996) Stereoselectivity of lipases in supercritical carbon dioxide. I. Dependence of the region- and enentioselectivity of porcine pancreas lipase on the water content during the hydrolysis of triolein and its partial glyderides. Chem Phys Lipids 79:101–106CrossRefGoogle Scholar
  41. Gross M, Auerbach G, Jeanicke R (1993) The catalytic activities of monomeric enzymes show complex pressure-dependence. FEBS Lett 321:256–260CrossRefGoogle Scholar
  42. Gumi T, Paolucci-Jeanjean D, Belleville M-P et al (2007) Enzymatic membrane reactor involving a hybrid membrane in supercritical carbon dioxide. J Membr Sci 297(1–2):98–103CrossRefGoogle Scholar
  43. Gunnlaugsdottir H, Sivik B (1995) Lipase-catalyzed alcoholysis of cod liver oil in supercritical carbon dioxide. JAOCS 72:399–405Google Scholar
  44. Guthalugu NK, Balaraman M, Kadimi US (2006) Optimization of enzymatic hydrolysis of triglycerides in soy deodorized distillate with supercritical carbon dioxide. Biochem Eng J 29:220–226CrossRefGoogle Scholar
  45. Habulin M, Knez Ž (2001a) Pressure stability of lipases and their use in different systems. Acta Chim Slov 48:521–532Google Scholar
  46. Habulin M, Knez Ž (2001b) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J Chem Technol Biotechnol 76(12):1260–1266CrossRefGoogle Scholar
  47. Habulin M, Knez Ž (2002) High-pressure enzymatic hydrolysis of oil. Eur J Lipid Sci Technol 104:381–386CrossRefGoogle Scholar
  48. Habulin M, Krmelj V, Knez Ž (1996a) Synthesis of oleic acid esters catalyzed by immobilized lipase. J Agric Food Chem 44(1):338–342CrossRefGoogle Scholar
  49. Habulin M, Krmelj V, Knez Ž (1996b) Supercritical carbon dioxide as a medium for enzymatically catalyzed reaction. In: Trepp C, von Rohr R (eds) Proceedings of high pressure chemical engineering. Elsevier, Amsterdam, pp 85–90Google Scholar
  50. Habulin M, Primožič M, Knez Ž (2005a) Enzymatic reactions in high-pressure membrane reactors. Ind Eng Chem Res 44(25):9619–9625CrossRefGoogle Scholar
  51. Habulin M, Primožič M, Knez Ž (2005b) Stability of proteinase form Carica papaya latex in dense gases. J Supercrit Fluids 33(1):27–34CrossRefGoogle Scholar
  52. Habulin M, Primožič M, Knez Ž (2007) Supercritical fluids as solvents for enzymatic reactions. Acta Chim Slov 54(4):667–677Google Scholar
  53. Hakoda M, Shiragami N, Enomoto A et al (2003) Measurements of hydrodynamic diameter of AOT reverse micelles containing lipase in supercritical ethane and its enzymatic reaction. Bioprocess Biosyst Eng 25:243–247CrossRefGoogle Scholar
  54. Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16(3):178–206CrossRefGoogle Scholar
  55. Halling PJ (2000) Biocatalysis in low-water media: understanding effects of reaction conditions. Curr Opin Chem Biol 4(1):74–80CrossRefGoogle Scholar
  56. Hammond DA, Karel M, Klibanov AM et al (1985) Enzymatic-reactions in supercritical gases. Appl Biochem Biotechnol 11(5):393–400CrossRefGoogle Scholar
  57. Hampson JW, Foglia TA (1999) Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor. JAOCS 76:777–781Google Scholar
  58. Harper N, Barreiros S (2002) Enhancement of enzyme activity in supercritical carbon dioxide via changes in acid-base conditions. Biotechnol Progr 18:1451–1454CrossRefGoogle Scholar
  59. Harper N, Dolman M, Moore BD et al (2001) Effect of water activity on the rate profile of subtilisin Carlsberg in toluene in the presence of an organo-soluble acid-base buffer. Enzyme Microb Technol 29:413–416CrossRefGoogle Scholar
  60. Hartmann T, Meyer HH, Scheper T (2001) The enantioselective hydrolysis of 3-hydroxy-5-phenyl-4-pentenoicacidethylester in supercritical carbon dioxide using lipases. Enzyme Microb Technol 28(7–8):653–660CrossRefGoogle Scholar
  61. Hernandez FJ, de los Rios AP, Gomez D et al (2006) A new recirculating enzymatic reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Appl Catal B 67(1–2):121–126CrossRefGoogle Scholar
  62. Hill AC (1898) Reversible zymohydrolysis. J Chem Soc 73:634–657CrossRefGoogle Scholar
  63. Hitzler MG, Smail FR, Ross SK et al (1998) Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process. Org Process Res Dev 2(3):137–146CrossRefGoogle Scholar
  64. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fuorous solvents, and under solvent free conditions. Chem Rev 107(6):2786–2820CrossRefGoogle Scholar
  65. Holmes JD, Steytler DC, Rees GD et al (1998) Bioconversion in a water-in-CO2 microemulsion. Langmuir 14(22):6371–6376CrossRefGoogle Scholar
  66. Hong S, Pyun Y (2001) Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment. Int J Food Microb 63:19–28CrossRefGoogle Scholar
  67. Ikariya T, Kayaki Y (2000) Supercritical fluids as reaction media for molecular. Catalysis Surveys from Japan 4(1):39–50CrossRefGoogle Scholar
  68. Ikushima Y (1997) Supercritical fluids: an interesting medium for chemical and biochemical processes. Adv Colloid Interface Sci 71–72:259–280CrossRefGoogle Scholar
  69. Ikushima Y, Saito N, Arai M et al (1995) Activation of a lipase triggered by interactions with supercritical carbon-dioxide in the near-critical region. J Phys Chem 99(22):8941–8944CrossRefGoogle Scholar
  70. Ikushima Y, Saito N, Hatakeda K et al (1996) Promotion of a lipase-catalyzed esterification in supercritical carbon dioxide in near-critical region. Chem Eng Sci 51:2817–2822CrossRefGoogle Scholar
  71. Jarzebski AB, Malinowski JJ (1995) Potentials and prospects for application of supercritical fluid technology in bioprocessing. Process Biochem 30(4):343–352CrossRefGoogle Scholar
  72. Jensen BH, Galluzzo DR, Jensen RG (1987) Partial-purification and characterization of free and immobilized lipases from mucor-miehei. Lipids 22(8):559–565CrossRefGoogle Scholar
  73. Kajimoto O (1999) Solvation in supercritical fluids: its effects on energy transfer and chemical reactions. Chem Rev 99:355–389CrossRefGoogle Scholar
  74. Kamat S, Barrera J, Beckman EJ et al (1992) Biocatalytic synthesis of acrylates in organic-solvents and supercritical fluids. 1. Optimization of enzyme environment. Biotechnol Bioeng 40(1):158–166CrossRefGoogle Scholar
  75. Kamat SV, Iwaskewycz B, Beckman EJ et al (1993) Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: tuning enzyme activity by changing pressure. Proc Natl Acad Sci U S A 90:2940–2944CrossRefGoogle Scholar
  76. Kamat S, Beckman EJ, Russell AJ (1995a) Enzyme activity in supercritical fluids. Crit Rev Biotechnol 15:41–71CrossRefGoogle Scholar
  77. Kamat S, Critchley G, Beckman EJ et al (1995b) Biocatalytic synthesis of acrylates in organic-solvents and supercritical fluids. 3. Does carbon-dioxide covalently modify enzymes. Biotechnol Bioeng 46(6):610–620CrossRefGoogle Scholar
  78. Kasche V, Schlothauer R, Brunner G (1988) Enzyme denaturation in supercritical CO2—stabilizing effect of s-s bonds during the depressurization step. Biotechnol Lett 10(8):569–574CrossRefGoogle Scholar
  79. Kastle JH, Loevenhart AS (1900) Concerning lipase, the fat-splitting enzyme, and the reversibility of its action. J Am Chem Soc 24:491–525Google Scholar
  80. Kieslich K, Van der Beek CP, De Bont JAM et al (eds) (1998) New frontiers in screening for microbial biocatalysts. Elsevier, AmsterdamGoogle Scholar
  81. King JW, Snyder JM, Frykman H et al (2001) Sterol ester production using lipase-catalyzed reactions in supercritical carbon dioxide. Eur Food Res Technol 212(5):566–569CrossRefGoogle Scholar
  82. Klibanov AM (1990) Asymmetric transformations catalyzed by enzymes in organic-solvents. Acc Chem Res 23(4):114–120CrossRefGoogle Scholar
  83. Klibanov AM (1995) Enzyme memory: what is remembered and why? Nature 374:596CrossRefGoogle Scholar
  84. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246CrossRefGoogle Scholar
  85. Knez Ž, Habulin M (1994) Lipase-catalysed esterification at high pressure. Biocatalysis 9(1–4):115–121CrossRefGoogle Scholar
  86. Knez Ž, Habulin M (2002) Compressed gases as alternative enzymatic-reaction solvents: a short review. J Supercrit Fluids 23(1):29–42CrossRefGoogle Scholar
  87. Knez Ž, Rižner V, Habulin M et al (1995) Enzymatic synthesis of oleyl oleate in dense fluids. JAOCS 72(11):1345–1349Google Scholar
  88. Knez Ž, Habulin M, Krmelj V (1998) Enzyme catalyzed reactions in dense gases. J Supercrit Fluids 14(1):17–29CrossRefGoogle Scholar
  89. Knez Ž, Gamse T, Marr R (2001) High pressure process technology: fundamentals and applications. In: Bertucco A, Vetter G (eds) Enzymatic reactions (Industrial chemistry library, Vol. 9). Elsevier, Amsterdam, p 486Google Scholar
  90. Knez Ž, Habulin M, Primožič M (2003) Hydrolyses in supercritical CO2 and their use in a high-pressure membrane reactor. Bioprocess Biosyst Eng 25(5):279–284CrossRefGoogle Scholar
  91. Knez Ž, Habulin M, Primožič M (2005) Enzymatic reactions in dense gases. Biochem Eng J 27(2):120–126CrossRefGoogle Scholar
  92. Kobayashi S (1999) Enzymatic polymerization: a new method of polymer synthesis. J Polym Sci Part A 37(16):3041–3056CrossRefGoogle Scholar
  93. Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240CrossRefGoogle Scholar
  94. Krieger N, Bhatnagar T, Baratti JC et al (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotech 42(4):279–286Google Scholar
  95. Krishna HS (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20(3–4):239–266CrossRefGoogle Scholar
  96. Krishna HS, Karanth NG (2001) Lipase-catalyzed synthesis of isoamyl butyrate. A kinetic study. Biochim Biophys Acta 1547(2):262–267CrossRefGoogle Scholar
  97. Krishna HS, Karanth NG (2002) Response surface modelling of lipase-catalyzed isoamyl propionate synthesis. J Food Sci 67(1):32–36CrossRefGoogle Scholar
  98. Krishna SH, Manohar B, Divakar S et al (1999) Lipase-catalyzed synthesis of isoamyl butyrate: optimization by response surface methodology. JAOCS 76(12):1483–1488Google Scholar
  99. Krishna SH, Manohar B, Divakar S et al (2000a) Optimization of isoamyl acetate production by using immobilized lipase from Mucor miehei by response surface methodology. Enzyme Microb Technol 26(2–4):131–136CrossRefGoogle Scholar
  100. Krishna HS, Prapulla SG, Karanth NG (2000b) Enzymatic synthesis of isoamyl butyrate using immobilized Rhizomucor miehei lipase in non-aqueous media. J Ind Microbiol Biotech 25(3):147–154CrossRefGoogle Scholar
  101. Krishna SH, Divakar S, Prapulla SG et al (2001a) Enzymatic synthesis of isoamyl acetate using immobilized lipase from Rhizomucor miehei. J Biotech 87(3):193–201CrossRefGoogle Scholar
  102. Krishna HS, Sattur AP, Karanth NG (2001b) Lipase-catalyzed synthesis of isoamyl isobutyrate—optimization using a central composite rotatable design. Process Biochem 37(1):9–16CrossRefGoogle Scholar
  103. Krmelj V, Habulin M, Knez Ž et al (1999) Lipase-catalyzed synthesis of oleyl oleate in pressurized and supercritical solvents. Fett/Lipid 101(1):34–38CrossRefGoogle Scholar
  104. Kumar R, Madras G, Modak J (2004) Enzymatic synthesis of ethyl palmitate in supercritical carbon dioxide. Ind Eng Chem Res 43:1568–1573CrossRefGoogle Scholar
  105. Laudani CG, Habulin M, Della Porta G et al (2005) Long-chain fatty acid ester synthesis by lipase in supercritical carbon dioxide. In: Pierucci S (ed) 7th Italian conference on chemical and process engineering, Vol. 2, ICheaP-7 AIDIC—Associazione Italiana di Ingegneria Chimica, Milano, pp 843–848Google Scholar
  106. Leitgeb M, Knez Ž (1990) The influence of water on the synthesis of n-butyl oleate by immobilized Mucor miehei lipase. JAOCS 67(11):775–778Google Scholar
  107. Leitgeb M, Čolnik M, Primožič M et al (2013) Activity of cellulase and α-amylase from Hortaea werneckii after cell treatment with supercritical carbon dioxide. J Supercrit Fluids 78:143–148CrossRefGoogle Scholar
  108. Liese A, Seelbach K, Wandrey C (2000) Industrial biotransformations. Wiley-VCH, Weinheim, pp 3–10CrossRefGoogle Scholar
  109. Lilly MD, Eighth PV (1994) Advances in biotransformation processes. Chem Eng Sci 49(2):151–159CrossRefGoogle Scholar
  110. Lin T-J, Chen S-W, Chang A-C (2006) Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalysed trans-esterification under supercritical conditions. Biochem Eng J 29(1–2):27–34CrossRefGoogle Scholar
  111. Lozano P, Avellaneda A, Pascual R et al (1996) Stability of immobilized alpha-chymotrypsin in supercritical carbon dioxide. Biotechnol Lett 18(11):1345–1350CrossRefGoogle Scholar
  112. Lozano P, De Diego T, Carrie D et al (2002) Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chem Commun 7:692–693CrossRefGoogle Scholar
  113. Lozano P, Víllora G, Gómez D et al (2004) Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. J Supercrit Fluids 29(1–2):121–128CrossRefGoogle Scholar
  114. Madras G, Kolluru C, Kumar R (2004a) Synthesis of biodiesel in supercritical fluids. Fuel 83:2029–2033CrossRefGoogle Scholar
  115. Madras G, Kumar R, Modak J (2004b) Synthesis of octyl palmitate in various supercritical fluids. Ind Eng Chem Res 43(24):7697–7701CrossRefGoogle Scholar
  116. Martinek K, Semenov AN, Berezin IV (1981) Enzymatic synthesis in biphasic aqueous-organic systems. I. Chemical equilibrium shift. Biochim Biophys Acta 658(1):76–89CrossRefGoogle Scholar
  117. Martinez JL, Rezaei K, Temelli F (2002) Effect of water on canola oil hydrolysis in an online extraction-reaction system using supercritical CO2. Ind Eng Chem Res 41(25):6475–6481CrossRefGoogle Scholar
  118. Marty A, Chulalaksananukul W, Condoret JS et al (1990) Comparison of lipase-catalyzed esterification in supercritical carbon-dioxide and in normal-hexane. Biotechnol Lett 12(1):11–16CrossRefGoogle Scholar
  119. Marty A, Chulalaksananukul W, Willemot RM et al (1992) Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotechnol Bioeng 39(3):273–280CrossRefGoogle Scholar
  120. Marty A, Combes D, Condoret J-S (1994) Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol Bioeng 43:497–504CrossRefGoogle Scholar
  121. Matsuda T, Harada T, Nakajima N et al (2000) Two classes of enzymes of opposite stereochemistry in an organism: one for fluorinated and another for nonfluorinated substrates. J Org Chem 65(1):157–163CrossRefGoogle Scholar
  122. Matsuda T, Kanamaru R, Watanabe K et al (2001a) Control on enantioselectivity with pressure for lipase-catalyzed esterification in supercritical carbon dioxide. Tetrahedron Lett 42:8319–8321CrossRefGoogle Scholar
  123. Matsuda T, Ohashi Y, Harada T et al (2001b) Conversion of pyrrole to pyrrole-2-carboxylate by cells of B. megaterium in supercritical CO2. Chem Commun 21:2194–2195CrossRefGoogle Scholar
  124. Matsuda T, Watanabe K, Harada T et al (2004) Enzymatic reactions in supercritical CO2: carboxylation, asymmetric reduction and esterification. Catal Today 96(3):103–111CrossRefGoogle Scholar
  125. Matsuo T, Sawamura N, Hashimoto Y et al (1981). European patent EP 00 35 883, [Fuji Oil]Google Scholar
  126. Mattiasson B, Aldercreutz P (1991) Tailoring the microenvironment of enzymes in water-poor systems. Trends Biotechnol 9(11):394–398CrossRefGoogle Scholar
  127. McCoy M (1999) Biocatalysis grows for drug synthesis. Chem Eng News 77(1):10–14CrossRefGoogle Scholar
  128. Mesiano AJ, Beckman EJ, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99(2):623–632CrossRefGoogle Scholar
  129. Miller DA, Blanch HW, Prausnitz JM (1991) Enzyme-catalyzed interesterification of triglycerides in supercritical carbon dioxide. Ind Eng Chem Res 30(5):939–946CrossRefGoogle Scholar
  130. Mori T, Funasaki M, Kobayashi A et al (2001) Reversible activity control of enzymatic reactions in supercritical fluid-enantioselective esterification catalyzed by a lipid-coated lipase in supercritical fluoroform. Kobunshi Ronbunshu 58(10):564–568CrossRefGoogle Scholar
  131. Muralidhar RV, Chirumamilla RR, Marchant R et al (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81–97CrossRefGoogle Scholar
  132. Muratov G, Seo K-W, Kim C (2005) Application of supercritical carbon dioxide to the bioconversion of cotton fibers. Ind Eng Chem Res 11(1):42–46Google Scholar
  133. Nagesha GK, Manohar B, Udaya Sankar K (2004) Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide. J Supercrit Fluids 33:137–145CrossRefGoogle Scholar
  134. Nakamura K (1990) Biochemical reactions in supercritical fluids. Trends Biotechnol 8(10):288–292CrossRefGoogle Scholar
  135. Nakamura K (1994) Biological applications of SCF. In: Perrut M, Brunner G (eds) Proceedings of third international symposium on supercritical fluids, vol. 3. Strasbourg, pp 121–130Google Scholar
  136. Nakamura K, Matsuda T (1998) Asymmetric reduction of ketones by the acetone powder of Geotrichum candidum. J Org Chem 63(24):8957–8964CrossRefGoogle Scholar
  137. Nakamura K, Chi MY, Yamada Y et al (1986) Lipase activity and stability in SC-CO2. Chem Eng Commun 45(1–6):207–212CrossRefGoogle Scholar
  138. Nakamura K, Inoue Y, Matsuda T et al (1999) Stereoselective oxidation reduction by immobilized Geotrichum candidum in an organic solvent. J Chem Soc-Perkin Trans 1(16):2397–2402CrossRefGoogle Scholar
  139. Nakamura K, Yamanaka R, Matsuda T et al (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron 14(18):2659–2681CrossRefGoogle Scholar
  140. Nakaya H, Nakamura K, Miyawaki O (2002) Lipase-catalyzed esterification of stearic acid with ethanol, and hydrolysis of ethyl stearate, near the critical point in supercritical carbon dioxide. JAOCS 79(1):23–27Google Scholar
  141. Novak Z, Habulin M, Krmelj V et al (2003) Silica aerogels as supports for lipase catalyzed esterifications at sub- and supercritical conditions. J Supercrit Fluids 27:169–178CrossRefGoogle Scholar
  142. Okamoto M, Hayashi R, Enomoto A et al (1991) High-pressure proteolytic digestion of food proteins—selective elimination of beta-lactoglobulin in bovine-milk whey concentrate. Agr Bio Chem 55:1253–1257CrossRefGoogle Scholar
  143. Oliveira D, Feihrmann AC, Rubira AF et al (2006) Assessment of two immobilized lipases activity treated in compressed fluids. J Supercrit Fluids 38:373–382CrossRefGoogle Scholar
  144. Ornstein RL (2002) Improving enzyme catalysis: screening, evolution and rational design. Marcel Dekker, New YorkGoogle Scholar
  145. Ottosson J, Fransson L, King JW et al (2002) Size as a parameter for solvent effects on Candida antarctica lipase B enantioselectivity. (BBA)/Protein. Struct Mol Enzymol 1594(2):325–334CrossRefGoogle Scholar
  146. Overmeyer A, Schrader-Lippelt S, Kasche V et al (1999) Lipase-catalyzed kinetic resolution of racemates at temperatures from 40 °C to 160 °C in supercritical CO2. Biotechnol Lett 21:65–69CrossRefGoogle Scholar
  147. Paljevac M, Primožič M, Habulin M et al (2007) Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures. J Supercrit Fluids 43(1):74–80CrossRefGoogle Scholar
  148. Palocci C, Falconi M, Chronopoulou L et al (2008) Lipase-catalyzed regioselective acylation of tritylglycosides in supercritical carbon dioxide. J Supercrit Fluids 45(1):88–93CrossRefGoogle Scholar
  149. Park CY, Ryu YW, Kim C (2001) Kinetics and rate of enzymatic hydrolysis of cellulose in supercritical carbon dioxide. Korean J Chem Eng 18(4):475–478CrossRefGoogle Scholar
  150. Pasta P, Mazzola G, Carrea G et al (1989) Subtilisin-catalyzed trans-esterification in supercritical carbon-dioxide. Biotechnol Lett 11(9):643–648CrossRefGoogle Scholar
  151. Patel RN (2000) Stereoselective biocatalysis. Marcel Dekker, New YorkCrossRefGoogle Scholar
  152. Patel RN (2001) Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr Opin Biotechnol 12(6):587–604CrossRefGoogle Scholar
  153. Peres C, Da Silva MDRG, Barreiros S (2003) Water activity effects on geranyl acetate synthesis catalyzed by novozym in supercritical ethane and in supercritical carbon dioxide. J Agr Food Chem 51:1884–1888CrossRefGoogle Scholar
  154. Peres C, Harper N, Da Silva MDRG et al (2005) Effect of zeolites on lipase catalyzed esterification in nonaqueous media. Enzyme Microb Technol 37(1):145–149CrossRefGoogle Scholar
  155. Perrut M (2000) Supercritical fluid applications: industrial developments and economic issues. Ind Eng Chem Re 39(12):4531–4535CrossRefGoogle Scholar
  156. Perve O, Vallikivi I, Lahe L et al (1997) Lipase-catalyzed enantioselective hydrolysis of bicyclo[3.2.0]heptanol esters in supercritical carbon dioxide. Bioorg Med Chem Lett 7(7):811–816CrossRefGoogle Scholar
  157. Primožič M, Habulin M, Knez Ž (2003) Parameter optimization for the enzymatic hydrolysis of sunflower oil in high-pressure reactor. JAOCS 80(7):643–646Google Scholar
  158. Primožič M, Habulin M, Knez Ž (2006) Proteinase-catalyzed hydrolysis of casein at atmospheric pressure and in supercritical media. Chem Biochem Eng Q 20(3):255–261Google Scholar
  159. Primožič M, Paljevac M, Habulin M et al (2009) Hydrolase-catalyzed reactions in membrane reactors at atmospheric and high pressure. Desalination 241(1–3):14–21CrossRefGoogle Scholar
  160. Randolph TW, Blanch HW, Prausnitz JM et al (1985) Enzymatic catalysis in supercritical fluid. Biotechnol Lett 7(5):325–328CrossRefGoogle Scholar
  161. Randolph TW, Blanch HW, Prausnitz JM (1988a) Enzyme-catalyzed oxidation of cholesterol in supercritical carbon dioxide. AIChE J 34(8):1354–1360CrossRefGoogle Scholar
  162. Randolph TW, Clark DS, Blanch HW et al (1988b) Enzymatic oxidation of cholesterol aggregates in supercritical carbon dioxide. Science 239(4838):387–390CrossRefGoogle Scholar
  163. Rantakyla M, Aaltonen O (1994) Enantioselective esterification of ibuprofen in supercritical carbon-dioxide by immobilized lipase. Biotechnol Lett 16(8):825–830CrossRefGoogle Scholar
  164. Rantakylä M, Alkio M, Aaltonen O (1996) Stereospecific hydrolysis of 3-(4-methoxyphenyl)glycidic ester in supercritical carbon dioxide by immobilized lipase. Biotechnol Lett 18(9):1089–1094CrossRefGoogle Scholar
  165. Rasor JP, Voss E (2001) Enzyme-catalyzed processes in pharmaceutical industry. Appl Catal A-General 221(1–2):145–158CrossRefGoogle Scholar
  166. Rezaei K, Temelli F (2000) Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide. JAOCS 77(8):903–909Google Scholar
  167. Rezaei K, Temelli F (2001) On-line extraction-reaction of canola oil using immobilized lipase in SC-CO2. J Supercrit Fluids 19(3):263–274CrossRefGoogle Scholar
  168. Rezaei K, Temelli F, Jenab E (2007) Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Crit Rev Biotechnol 27(4):183–195CrossRefGoogle Scholar
  169. Romero MD, Calvo L, Alba C et al (2005) Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in supercritical carbon dioxide. J Supercrit Fluids 33(1):77–84CrossRefGoogle Scholar
  170. Russell AJ, Beckman EJ (1991) Should the high diffusivity of a supercritical fluid increase the rate of an enzyme-catalyzed reaction. Enzyme Microb Technol 13(12):1007CrossRefGoogle Scholar
  171. Šabeder S, Habulin M, Knez Ž (2005) Comparison of the esterification of fructose and palmitic acid in organic solvent and in supercritical carbon dioxide. Ind Eng Chem Res 44:9631–9635CrossRefGoogle Scholar
  172. Salgin U, Salgin S, Takaç S (2007) The enantioselective hydrolysis of racemic naproxen methyl ester in supercritical CO2 using Candida rugosa lipase. J Supercrit Fluids 43(2):310–316CrossRefGoogle Scholar
  173. Saul S, Corr S, Micklefield J (2004) Biotransformations in low-boiling hydrofluorocarbon solvents. Angew Chem Int Ed 43(41):5519–5523CrossRefGoogle Scholar
  174. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37(12):1609–1633CrossRefGoogle Scholar
  175. Schmitt-Rozieres M, Deyris V, Comeau LC (2000) Enrichment of polyunsaturated fatty acids from sardine cannery effluents by enzymatic selective esterification. JAOCS 77(3):329–332Google Scholar
  176. Schulze B, Broxterman R, Shoemaker H et al (1998) Review of biocatalysis in the production of chiral fine chemicals. Speciality Chemicals Magazine 18:244–246Google Scholar
  177. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7(5):267–278CrossRefGoogle Scholar
  178. Smallridge AJ, Trewhella MA, Wang Z (2002) The enzyme-catalysed stereoselective transesterification of phenylalanine derivatives in supercritical carbon dioxide. Aust J Chem 55(4):259–262CrossRefGoogle Scholar
  179. Sovová H, Zarevućka M (2003) Lipase-catalyzed hydrolysis of blackcurrant oil in supercritical carbon dioxide. Chem Eng Sci 58(11):2339–2350CrossRefGoogle Scholar
  180. Sovová H, Zarevúcka M, Bernášek P et al (2008) Kinetics and specificity of Lipozyme-catalysed oil hydrolysis in supercritical CO2. Chem Eng Res Des 86(7):673–681CrossRefGoogle Scholar
  181. Srivastava S, Madras G, Modak J (2003) Esterification of myristic acid in supercritical carbon dioxide. J Supercrit Fluids 27:55–64CrossRefGoogle Scholar
  182. Stinson SC (2000) Chiral drugs. Robust market starts to mature. Chem Eng News 78(43):55–78CrossRefGoogle Scholar
  183. Turner C, Persson M, Mathiasson L et al (2001a) Lipase-catalyzed reactions in organic and supercritical solvents: application to fat-soluble vitamin determination in milk powder and infant formula. Enzyme Microb Technol 29(2–3):111–121CrossRefGoogle Scholar
  184. Turner C, King JW, Mathiasson L (2001b) On-line supercritical fluid extraction/enzymatic hydrolysis of vitamin A esters: a new simplified approach for the determination of vitamins A and E in food. J Agric Food Chem 49:553–558CrossRefGoogle Scholar
  185. Varma MN, Madras G (2007) Synthesis of isoamyl laurate and isoamyl stearate in supercritical carbon dioxide. Appl Biochem Biotechnol 136:139–147CrossRefGoogle Scholar
  186. Vasić-Rački Đ, Kragl U, Conrad D et al (1998) Modelling of yeast alcohol dehydrogenase catalysed production of chiral alcohols. Chem Biochem Eng Q 12(2):87–95Google Scholar
  187. Vermue MH, Tramper J, De Jong JPJ et al (1992) Enzymatic transesterification in near-critical carbon dioxide: effect of pressure, Hildebrand solubility parameter and water content. Enzyme Microb Technol 14(8):649–655CrossRefGoogle Scholar
  188. Vezzù K, Betto V, Elvassore N (2008) High-pressure gas-assisted absorption of protein within biopolymeric micro-patterned membrane. Biochem Eng J 40:241–248CrossRefGoogle Scholar
  189. Vulfson EN (1998) Novel surfactants: preparation, applications and biodegradability, Surfactant science series. Marcel Dekker, New York, p 279Google Scholar
  190. Wahler D, Reymond JL (2001) Novel methods for biocatalyst screening. Curr Opin Chem Biol 5(2):152–158CrossRefGoogle Scholar
  191. Weber A, Catchpole O, Eltringham W (2008) Supercritical fluid assisted, integrated process for the synthesis and separation of different lipid derivatives. J Sep Sci 31(8):1346–1351CrossRefGoogle Scholar
  192. Weder JK (1984) Studies on proteins and amino-acids exposed to supercritical carbon-dioxide extraction conditions. Food Chem 15(3):175–190CrossRefGoogle Scholar
  193. Wong JM, Johnston KP (1986) Solubilization of biomolecules in carbon dioxide-based supercritical fluids. Biotechnol Progr 2(1):29–39CrossRefGoogle Scholar
  194. Yoshimura T, Furutera M, Shimoda M et al (2002) Inactivation efficiency of enzymes in buffered system by continuous method with microbubbles of supercritical carbon dioxide. J Food Sci 67:3227–3231CrossRefGoogle Scholar
  195. Yu ZR, Rizvi S, Zollweg JA (1992) Enzymic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide. Biotechnol Progr 8(6):508–513CrossRefGoogle Scholar
  196. Zagrobelny J, Bright FV (1992) In-situ studies of protein conformation in supercritical fluids-trypsin in carbon-dioxide. Biotechnol Progr 8(5):421–423CrossRefGoogle Scholar
  197. Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5(2):130–136CrossRefGoogle Scholar
  198. Zaks A, Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2(12):513–531CrossRefGoogle Scholar
  199. Zaks A, Klibanov AM (1984) Enzymic catalysis in organic media at 100 °C. Science 224(4654):1249–1251CrossRefGoogle Scholar
  200. Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82(10):3192–3196CrossRefGoogle Scholar
  201. Zaks A, Klibanov AM (1986) Substrate-specificity of enzymes in organic-solvents vs water is reversed. J Am Chem Soc 108(10):2767–2768CrossRefGoogle Scholar
  202. Zaks A, Klibanov AM (1988a) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263(7):3194–3201Google Scholar
  203. Zaks A, Klibanov AM (1988b) The effect of water on enzyme action in organic media. J Biol Chem 263(17):8017–8021Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical Engineering, Laboratory for Separation Processes and Product DesignUniversity of MariborMariborSlovenia

Personalised recommendations