Self-explanatory Sparse Representation for Image Classification

  • Bao-Di Liu
  • Yu-Xiong Wang
  • Bin Shen
  • Yu-Jin Zhang
  • Martial Hebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8690)

Abstract

Traditional sparse representation algorithms usually operate in a single Euclidean space. This paper leverages a self-explanatory reformulation of sparse representation, i.e., linking the learned dictionary atoms with the original feature spaces explicitly, to extend simultaneous dictionary learning and sparse coding into reproducing kernel Hilbert spaces (RKHS). The resulting single-view self-explanatory sparse representation (SSSR) is applicable to an arbitrary kernel space and has the nice property that the derivatives with respect to parameters of the coding are independent of the chosen kernel. With SSSR, multiple-view self-explanatory sparse representation (MSSR) is proposed to capture and combine various salient regions and structures from different kernel spaces. This is equivalent to learning a nonlinear structured dictionary, whose complexity is reduced by learning a set of smaller dictionary blocks via SSSR. SSSR and MSSR are then incorporated into a spatial pyramid matching framework and developed for image classification. Extensive experimental results on four benchmark datasets, including UIUC-Sports, Scene 15, Caltech-101, and Caltech-256, demonstrate the effectiveness of our proposed algorithm.

Keywords

Reproducing Kernel Hilbert Spaces Sparse Representation Multiple View Image Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bo, L., Sminchisescu, C.: Efficient match kernel between sets of features for visual recognition. In: Proceedings of Advances in Neural Information Processing Systems, vol. 2, pp. 135–143. The MIT Press (2009)Google Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27:1–27:27 (2011)Google Scholar
  3. 3.
    Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(11), 2765–2781 (2013)CrossRefGoogle Scholar
  4. 4.
    Gao, S., Tsang, I.W.-H., Chia, L.-T.: Kernel sparse representation for image classification and face recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Gao, S., Tsang, I.W.H., Chia, L.T.: Sparse representation with kernels. IEEE Transactions on Image Processing 22(2), 423–434 (2013)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 92–104 (2013)CrossRefGoogle Scholar
  7. 7.
    van Gemert, J.C., Veenman, C.J., Smeulders, A.W., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)CrossRefGoogle Scholar
  8. 8.
    van Gemert, J.C., Veenman, C.J., Smeulders, A.W., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)CrossRefGoogle Scholar
  9. 9.
    Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)MATHGoogle Scholar
  10. 10.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)Google Scholar
  11. 11.
    Koniusz, P., Yan, F., Mikolajczyk, K.: Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection. Computer Vision and Image Understanding 117(5), 479–492 (2013)CrossRefGoogle Scholar
  12. 12.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 19th CVPR, vol. 2, pp. 2169–2178. IEEE (2006)Google Scholar
  13. 13.
    Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: Proceedings of Advances in Neural Information Processing Systems, pp. 801–808. MIT Press (2006)Google Scholar
  14. 14.
    Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Workshop of the 17th CVPR, vol. 12, p. 178. IEEE (2004)Google Scholar
  15. 15.
    Li, L.J., Li, F.F.: What, where and who? classifying events by scene and object recognition. In: Proceedings of the 11th ICCV, pp. 1–8. IEEE (2007)Google Scholar
  16. 16.
    Liu, B.D., Wang, Y.X., Bin, S., Zhang, Y.J., Wang, Y.J.: Blockwise coordinate descent schemes for sparse representation. In: Proceedings of the 39th ICASSP, pp. 5304–5308. IEEE (2014)Google Scholar
  17. 17.
    Liu, B.D., Wang, Y.X., Shen, B., Zhang, Y.J., Wang, Y.J., Liu, W.F.: Self-explanatory convex sparse representation for image classification. In: Proceedings of Systems, Man, and Cybernetics (SMC). pp. 2120–2125. IEEE (2013)Google Scholar
  18. 18.
    Liu, B.D., Wang, Y.X., Zhang, Y.J., Shen, B.: Learning dictionary on manifolds for image classification. Pattern Recognition 46(7), 1879–1890 (2013)CrossRefGoogle Scholar
  19. 19.
    Liu, B.D., Wang, Y.X., Zhang, Y.J., Zheng, Y.: Discriminant sparse coding for image classification. In: Proceedings of the 37th ICASSP, pp. 2193–2196. IEEE (2012)Google Scholar
  20. 20.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171–184 (2013)CrossRefGoogle Scholar
  21. 21.
    Liu, W., Tao, D.: Multiview hessian regularization for image annotation. IEEE Transactions on Image Processing 22(7), 2676–2687 (2013)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Liu, W., Tao, D., Cheng, J., Tang, Y.: Multiview hessian discriminative sparse coding for image annotation. Computer Vision and Image Understanding 118, 50–60 (2014)CrossRefGoogle Scholar
  23. 23.
    Nguyen, H.V., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Kernel dictionary learning. In: Proceedings of the 37th ICASSP, pp. 2021–2024. IEEE (2012)Google Scholar
  24. 24.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Shen, B., Hu, W., Zhang, Y., Zhang, Y.J.: Image inpainting via sparse representation. In: Proceedings of the 34th ICASSP, pp. 697–700. IEEE (2009)Google Scholar
  28. 28.
    Shen, B., Si, L.: Non-negative matrix factorization clustering on multiple manifolds. In: Proceedings of the 24th AAAI, pp. 575–580. IEEE (2010)Google Scholar
  29. 29.
    Shen, B., Si, L., Ji, R., Liu, B.: Robust nonnegative matrix factorization via l_1 norm regularization. arXiv preprint arXiv:1204.2311 (2012)Google Scholar
  30. 30.
    Tan, H., Cheng, B., Feng, J., Feng, G., Wang, W., Zhang, Y.J.: Low-n-rank tensor recovery based on multi-linear augmented lagrange multiplier method. Neurocomputing 119, 144–152 (2013)CrossRefGoogle Scholar
  31. 31.
    Tan, H., Cheng, B., Wang, W., Zhang, Y.J., Ran, B.: Tensor completion via a multi-linear low-n-rank factorization model. Neurocomputing 133, 161–169 (2014)CrossRefGoogle Scholar
  32. 32.
    Thiagarajan, J., Ramamurthy, K., Spanias, A.: Multiple kernel sparse representations for supervised and unsupervised learning. IEEE Transactions on Image Processing 23(7), 2905–2915 (2014)CrossRefGoogle Scholar
  33. 33.
    Vedaldi, A., Zisserman, A.: Sparse kernel approximations for efficient classification and detection. In: Proceedings of the 25th CVPR, pp. 2320–2327. IEEE (2012)Google Scholar
  34. 34.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of the 23rd CVPR, pp. 3360–3367. IEEE (2010)Google Scholar
  35. 35.
    Wang, Y.X., Gui, L.Y., Zhang, Y.J.: Neighborhood preserving non-negative tensor factorization for image representation. In: Proceedings of the 37th ICASSP, pp. 3389–3392. IEEE (2012)Google Scholar
  36. 36.
    Wang, Y.X., Zhang, Y.J.: Image inpainting via weighted sparse non-negative matrix factorization. In: Proceedings of the 18th ICIP, pp. 3409–3412. IEEE (2011)Google Scholar
  37. 37.
    Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25(6), 1336–1353 (2013)CrossRefGoogle Scholar
  38. 38.
    Wu, J., Rehg, J.M.: Beyond the euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th ICCV, pp. 630–637. IEEE (2009)Google Scholar
  39. 39.
    Wu, Y., Shen, B., Ling, H.: Visual tracking via online non-negative matrix factorization. IEEE Transactions on Circuits and Systems for Video Technology 24(3), 374–383 (2014)CrossRefGoogle Scholar
  40. 40.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the 22nd CVPR, pp. 1794–1801. IEEE (2009)Google Scholar
  41. 41.
    Yang, M., Zhang, L., Shiu, S.K., Zhang, D.: Robust kernel representation with statistical local features for face recognition. IEEE Transactions on Neural Networks and Learning Systems 24(6), 900–912 (2013)CrossRefGoogle Scholar
  42. 42.
    Yuan, X.T., Yan, S.: Visual classification with multi-task joint sparse representation. In: Proceedings of the 23th CVPR, pp. 3493–3500. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bao-Di Liu
    • 1
  • Yu-Xiong Wang
    • 2
  • Bin Shen
    • 3
  • Yu-Jin Zhang
    • 4
  • Martial Hebert
    • 2
  1. 1.Col. of Information and Control EngineeringChina University of PetroleumQingdaoChina
  2. 2.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  3. 3.Dept. of Computer SciencePurdue UniversityWest LafayetteUSA
  4. 4.Dept. of Electronic EngineeringTsinghua UniversityBeijingChina

Personalised recommendations