Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Computer Vision

ECCV 2014: Computer Vision – ECCV 2014 pp 49–64Cite as

  1. Home
  2. Computer Vision – ECCV 2014
  3. Conference paper
Deep Network Cascade for Image Super-resolution

Deep Network Cascade for Image Super-resolution

  • Zhen Cui19,20,
  • Hong Chang19,
  • Shiguang Shan19,
  • Bineng Zhong20 &
  • …
  • Xilin Chen19 
  • Conference paper
  • 22k Accesses

  • 95 Citations

  • 3 Altmetric

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8693)

Abstract

In this paper, we propose a new model called deep network cascade (DNC) to gradually upscale low-resolution images layer by layer, each layer with a small scale factor. DNC is a cascade of multiple stacked collaborative local auto-encoders. In each layer of the cascade, non-local self-similarity search is first performed to enhance high-frequency texture details of the partitioned patches in the input image. The enhanced image patches are then input into a collaborative local auto-encoder (CLA) to suppress the noises as well as collaborate the compatibility of the overlapping patches. By closing the loop on non-local self-similarity search and CLA in a cascade layer, we can refine the super-resolution result, which is further fed into next layer until the required image scale. Experiments on image super-resolution demonstrate that the proposed DNC can gradually upscale a low-resolution image with the increase of network layers and achieve more promising results in visual quality as well as quantitative performance.

Keywords

  • Super-resolution
  • Auto-encoder
  • Deep learning

Download conference paper PDF

References

  1. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1167–1183 (2002)

    CrossRef  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 19, p. 153 (2007)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2005)

    Google Scholar 

  4. Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. I–275 (2004)

    Google Scholar 

  5. Dong, W., Zhang, L., Shi, G.: Centralized sparse representation for image restoration. In: IEEE International Conference on Computer Vision (ICCV), pp. 1259–1266 (2011)

    Google Scholar 

  6. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006)

    CrossRef  MathSciNet  Google Scholar 

  7. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 13(10), 1327–1344 (2004)

    CrossRef  Google Scholar 

  8. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Transactions on Graphics 30(2), 12 (2011)

    CrossRef  Google Scholar 

  9. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)

    CrossRef  Google Scholar 

  10. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: IEEE International Conference on Computer Vision (ICCV), pp. 349–356 (2009)

    Google Scholar 

  11. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes III, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image Processing 12(5), 597–606 (2003)

    CrossRef  Google Scholar 

  12. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Irani, M., Peleg, S.: Improving resolution by image registration. Graphical Models and Image Processing 53(3), 231–239 (1991)

    CrossRef  Google Scholar 

  15. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(6), 1127–1133 (2010)

    CrossRef  MathSciNet  Google Scholar 

  16. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep learning. In: International Conference on Machine Learning, ICML (2011)

    Google Scholar 

  17. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in neural information processing systems (NIPS), vol. 19, p. 801 (2007)

    Google Scholar 

  18. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area v2. In: Advances in neural information processing systems (NIPS), vol. 20, pp. 873–880 (2008)

    Google Scholar 

  19. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: International Conference on Machine learning (ICML), pp. 609–616 (2009)

    Google Scholar 

  20. Lin, Z., He, J., Tang, X., Tang, C.-K.: Limits of learning-based superresolution algorithms. International Journal of Computer Vision 80(3), 406–420 (2008)

    CrossRef  Google Scholar 

  21. Lin, Z., Shum, H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 83–97 (2004)

    CrossRef  Google Scholar 

  22. Lu, X., Yuan, H., Yan, P., Yuan, Y., Li, X.: Geometry constrained sparse coding for single image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1648–1655 (2012)

    Google Scholar 

  23. Ranzato, M., Boureau, Y.L., LeCun, Y.: Sparse feature learning for deep belief networks. In: Advances in neural information processing systems (NIPS), vol. 20, pp. 1185–1192 (2007)

    Google Scholar 

  24. Ngiam, J., Koh, P.W., Chen, Z., Bhaskar, S., Ng, A.Y.: Sparse filtering. In: Advances in Neural Information Processing Systems (NIPS), vol. 24, pp. 1125–1133 (2011)

    Google Scholar 

  25. Nguyen, K., Sridharan, S., Denman, S., Fookes, C.: Feature-domain super-resolution framework for gabor-based face and iris recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2649 (2012)

    Google Scholar 

  26. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. Signal Processing Magazine 20(3), 21–36 (2003)

    CrossRef  Google Scholar 

  27. Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. In: Advances in Neural Information Processing Systems (NIPS), vol. 15, pp. 1279–1286 (2002)

    Google Scholar 

  28. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: International Conference on Machine learning (ICML), pp. 1096–1103. ACM (2008)

    Google Scholar 

  29. Wang, W., Cui, Z., Chang, H., Shan, S., Chen, X.: Deeply coupled auto-encoder networks for cross-view classification. arXiv preprint arXiv:1402.2031 (2014)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Transactions on Image Processing 13(4), 600–612 (2004)

    CrossRef  Google Scholar 

  31. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 350–358 (2012)

    Google Scholar 

  32. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2013)

    Google Scholar 

  33. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  34. Zhang, K., Gao, X., Tao, D., Li, X.: Multi-scale dictionary for single image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1114–1121 (2012)

    Google Scholar 

  35. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing 15(8), 2226–2238 (2006)

    CrossRef  Google Scholar 

  36. Zontak, M., Irani, M.: Internal statistics of a single natural image. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China

    Zhen Cui, Hong Chang, Shiguang Shan & Xilin Chen

  2. School of Computer Science and Technology, Huaqiao University, Xiamen, China

    Zhen Cui & Bineng Zhong

Authors
  1. Zhen Cui
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hong Chang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Shiguang Shan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Bineng Zhong
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xilin Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Toronto, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada

    David Fleet

  2. Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic

    Tomas Pajdla

  3. Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany

    Bernt Schiele

  4. ESAT - PSI, iMinds, KU Leuven, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium

    Tinne Tuytelaars

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cui, Z., Chang, H., Shan, S., Zhong, B., Chen, X. (2014). Deep Network Cascade for Image Super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-10602-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10601-4

  • Online ISBN: 978-3-319-10602-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.