Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR (2009)
Google Scholar
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)
Google Scholar
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: SUN database: Large-scale scene recognition from abbey to zoo. In: CVPR (2010)
Google Scholar
Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. PAMI 34 (2012)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Google Scholar
Sermanet, P., Eigen, D., Zhang, S., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: Integrated recognition, localization and detection using convolutional networks. In: ICLR (April 2014)
Google Scholar
Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR (2009)
Google Scholar
Patterson, G., Hays, J.: SUN attribute database: Discovering, annotating, and recognizing scene attributes. In: CVPR (2012)
Google Scholar
Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3D human pose annotations. In: ICCV (2009)
Google Scholar
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Palmer, S., Rosch, E., Chase, P.: Canonical perspective and the perception of objects. Attention and Performance IX 1, 4 (1981)
Google Scholar
Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Brostow, G., Fauqueur, J., Cipolla, R.: Semantic object classes in video: A high-definition ground truth database. PRL 30(2), 88–97 (2009)
CrossRef
Google Scholar
Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and web-based tool for image annotation. IJCV 77(1-3), 157–173 (2008)
CrossRef
Google Scholar
Bell, S., Upchurch, P., Snavely, N., Bala, K.: OpenSurfaces: A richly annotated catalog of surface appearance. SIGGRAPH 32(4) (2013)
Google Scholar
Ordonez, V., Kulkarni, G., Berg, T.: Im2text: Describing images using 1 million captioned photographs. In: NIPS (2011)
Google Scholar
Deng, J., Russakovsky, O., Krause, J., Bernstein, M., Berg, A., Fei-Fei, L.: Scalable multi-label annotation. In: CHI (2014)
Google Scholar
Lin, T., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: Common objects in context. CoRR abs/1405.0312 (2014)
Google Scholar
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1-3), 7–42 (2002)
Google Scholar
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)
CrossRef
Google Scholar
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: CVPR Workshop of Generative Model Based Vision, WGMBV (2004)
Google Scholar
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)
Google Scholar
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Google Scholar
Lecun, Y., Cortes, C.: The MNIST database of handwritten digits (1998)
Google Scholar
Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Technical report, Columbia Universty (1996)
Google Scholar
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. Rep. (2009)
Google Scholar
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI 30(11), 1958–1970 (2008)
CrossRef
Google Scholar
Ordonez, V., Deng, J., Choi, Y., Berg, A., Berg, T.: From large scale image categorization to entry-level categories. In: ICCV (2013)
Google Scholar
Fellbaum, C.: WordNet: An electronic lexical database. Blackwell Books (1998)
Google Scholar
Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical Report CNS-TR-201, Caltech. (2010)
Google Scholar
Hjelmås, E., Low, B.: Face detection: A survey. CVIU 83(3), 236–274 (2001)
Google Scholar
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild. Technical Report 07-49, University of Massachusetts, Amherst (October 2007)
Google Scholar
Russakovsky, O., Deng, J., Huang, Z., Berg, A., Fei-Fei, L.: Detecting avocados to zucchinis: what have we done, and where are we going? In: ICCV (2013)
Google Scholar
Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV 81(1), 2–23 (2009)
CrossRef
Google Scholar
Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: CVPR (2006)
Google Scholar
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011)
CrossRef
Google Scholar
Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: CVPR (2009)
Google Scholar
Heitz, G., Koller, D.: Learning spatial context: Using stuff to find things. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 30–43. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Sitton, R.: Spelling Sourcebook. Egger Publishing (1996)
Google Scholar
Berg, T., Berg, A.: Finding iconic images. In: CVPR (2009)
Google Scholar
Torralba, A., Efros, A.: Unbiased look at dataset bias. In: CVPR (2011)
Google Scholar
Douze, M., Jégou, H., Sandhawalia, H., Amsaleg, L., Schmid, C.: Evaluation of gist descriptors for web-scale image search. In: CIVR (2009)
Google Scholar
Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)
CrossRef
Google Scholar
Girshick, R., Felzenszwalb, P., McAllester, D.: Discriminatively trained deformable part models, release 5. PAMI (2012)
Google Scholar
Zhu, X., Vondrick, C., Ramanan, D., Fowlkes, C.: Do we need more training data or better models for object detection? In: BMVC (2012)
Google Scholar
Brox, T., Bourdev, L., Maji, S., Malik, J.: Object segmentation by alignment of poselet activations to image contours. In: CVPR (2011)
Google Scholar
Yang, Y., Hallman, S., Ramanan, D., Fowlkes, C.: Layered object models for image segmentation. PAMI 34(9), 1731–1743 (2012)
CrossRef
Google Scholar
Ramanan, D.: Using segmentation to verify object hypotheses. In: CVPR (2007)
Google Scholar
Dai, Q., Hoiem, D.: Learning to localize detected objects. In: CVPR (2012)
Google Scholar
Rashtchian, C., Young, P., Hodosh, M., Hockenmaier, J.: Collecting image annotations using Amazon’s Mechanical Turk. In: NAACL Workshop (2010)
Google Scholar