Bach, F., Mairal, J., Ponce, J.: Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(4), 791–804 (2012)
CrossRef
Google Scholar
Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Google Scholar
Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. Journal of Computer Vision 88(2), 303–338 (2010)
CrossRef
Google Scholar
Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 (2005)
Google Scholar
Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: IEEE Int. Conf. on Computer Vision (2009)
Google Scholar
Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008)
Google Scholar
Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. International Journal of Computer Vision 80(3), 300–316 (2008)
CrossRef
Google Scholar
Jain, A., Zappella, L., McClure, P., Vidal, R.: Visual dictionary learning for joint object categorization and segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 718–731. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural SVMs. Machine Learning 77(1), 27–59 (2009)
CrossRef
MATH
Google Scholar
Kohli, P., Ladicky, L., Torr, P.H.S.: Robust higher order potentials for enforcing label consistency. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008)
Google Scholar
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. on Pattern Analysis and Machine Intelligence 26(2), 147–159 (2004)
Google Scholar
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials. In: Neural Information Processing Systems, pp. 109–117 (2011)
Google Scholar
Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, where and how many? Combining object detectors and cRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Ladicky, L., Russell, C., Kohli, P., Torr, P.: Associative hierarchical CRFs for object class image segmentation. In: IEEE Int. Conf. on Computer Vision (2009)
Google Scholar
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Google Scholar
Laptev, I.: On space-time interest points. International Journal of Computer Vision 64(2-3), 107–123 (2005)
CrossRef
Google Scholar
Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Neural Information Processing Systems, pp. 801–808 (2007)
Google Scholar
Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Discriminative learned dictionaries for local image analysis. IEEE Conference on Computer Vision and Pattern Recognition (2008)
Google Scholar
Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)
Google Scholar
Naikal, N., Singaraju, D., Sastry, S.S.: Using models of objects with deformable parts for joint categorization and segmentation of objects. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 79–93. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Opelt, A., Pinz, A.: The TU Graz-02 database (2002),
http://www.emt.tugraz.at/~pinz/data/GRAZ02/
Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: IEEE Conf. on Computer Vision and Pattern Recognition (2008)
Google Scholar
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. Journal of Computer Vision 81(1), 2–23 (2009)
CrossRef
Google Scholar
Singaraju, D., Vidal, R.: Using global bag of features models in random fields for joint categorization and segmentation of objects. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Google Scholar
Tighe, J., Lazebnik, S.: Finding things: Image parsing with regions and per-exemplar detectors. In: IEEE Conf. on Computer Vision and Pattern Recognition (2013)
Google Scholar
Vedaldi, A.: A MATLAB wrapper of SVMstruct (2011),
http://www.vlfeat.org/~vedaldi/code/svm-struct-matlab.html
Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008),
http://www.vlfeat.org/
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Yang, J., Yang, M.: Top-down visual saliency via joint crf and dictionary learning. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Google Scholar
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Google Scholar
Yao, J., Fidler, S., Urtasun, R.: Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In: IEEE Conf. on Computer Vision and Pattern Recognition (2012)
Google Scholar
Yu, C.N.J., Joachims, T.: Learning structural svms with latent variables. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 1169–1176. ACM, New York (2009)
Google Scholar
Zhang, K., Zhang, W., Zheng, Y., Xue, X.: Sparse reconstruction for weakly supervised semantic segmentation. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, pp. 1889–1895 (2013)
Google Scholar