Advertisement

Interreflection Removal Using Fluorescence

  • Ying Fu
  • Antony Lam
  • Yasuyuki Matsushita
  • Imari Sato
  • Yoichi Sato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

Interreflections exhibit a number of challenges for existing shape-from-intensity methods that only assume a direct lighting model. Removing the interreflections from scene observations is of broad interest since it enhances the accuracy of those methods. In this paper, we propose a method for removing interreflections from a single image using fluorescence. From a bispectral observation of reflective and fluorescent components recorded in distinct color channels, our method separates direct lighting from interreflections. Experimental results demonstrate the effectiveness of the proposed method on complex and dynamic scenes. In addition, we show how our method improves an existing photometric stereo method in shape recovery.

Keywords

Fluorescence bispectral model bispectral interreflection model and interreflection removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achar, S., Nuske, S., Narasimhan, S.G.: Compensating for motion during direct-global separation. In: Proc. of International Conference on Computer Vision (ICCV), pp. 1481–1488 (December 2013)Google Scholar
  2. 2.
    Forsyth, D., Zisserman, A.: Mutual illumination. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 466–473 (June 1989)Google Scholar
  3. 3.
    Forsyth, D., Zisserman, A.: Shape from shading in the light of mutual illumination. Image Vision Computing 8(1), 42–49 (1990)CrossRefGoogle Scholar
  4. 4.
    Y., Fu, L.A., Sato, I., Okabe, T., Sato, Y.: Separating reflective and fluorescent components using high frequency illumination in the spectral domain. In: Proc. of International Conference on Computer Vision, ICCV (2013)Google Scholar
  5. 5.
    Funt, B.V., Drew, M.S., Ho, J.: Color constancy from mutual reflection. International Journal of Computer Vision (IJCV) 6(1), 5–24 (1991)Google Scholar
  6. 6.
    Funt, B., Drew, M.: Color space analysis of mutual illumination. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 15(12), 1319–1326 (1993)Google Scholar
  7. 7.
    Glassner, A.S.: A model for fluorescence and phosphorescence. In: Photorealistic Rendering Techniques, pp. 60–70. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Han, S., Matsushita, Y., Sato, I., Okabe, T., Sato, Y.: Camera spectral sensitivity estimation from a single image under unknown illumination by using fluorescence. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)Google Scholar
  9. 9.
    Hullin, M.B., Fuchs, M., Ihrke, I., Seidel, H.P., Lensch, H.P.A.: Fluorescent immersion range scanning. ACM Trans. on Graph (ToG) 27, 87:1–87:10 (2008)Google Scholar
  10. 10.
    Hullin, M.B., Hanika, J., Ajdin, B., Seidel, H.P., Kautz, J., Lensch, H.P.A.: Acquisition and analysis of bispectral bidirectional reflectance and reradiation distribution functions. ACM Trans. on Graph (ToG) 29, 97:1–97:7 (2010)Google Scholar
  11. 11.
    Johnson, G.M., Fairchild, M.D.: Full-spectral color calculations in realistic image synthesis. IEEE Computer Graphics and Applications 19, 47–53 (1999)CrossRefGoogle Scholar
  12. 12.
    Koenderink, J.J., Van Doorn, A.J.: Geometrical modes as a general method to treat diffuse interreflections in radiometry. Journal of the Optical Soceity of America (JOSA) 73(6), 843–850 (1983)Google Scholar
  13. 13.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer (2006)Google Scholar
  14. 14.
    Lam, A., Sato, I.: Spectral modeling and relighting of reflective-fluorescent scenes. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2013)Google Scholar
  15. 15.
    Liao, M., Huang, X., Yang, R.: Interreflection removal for photometric stereo by using spectrum-dependent albedo. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 689–696 (2011)Google Scholar
  16. 16.
    McNamara, G., Gupta, A., Reynaert, J., Coates, T.D., Boswell, C.: Spectral imaging microscopy web sites and data. Cytometry. Part A: The Journal of the International Society for Analytical Cytology 69(8), 863–871 (2006)Google Scholar
  17. 17.
    Nayar, S.K., Gao, Y.: Colored interreflections and shape recovery. In: Proceedings of the Image Understanding Workshop (1992)Google Scholar
  18. 18.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: ACM SIGGRAPH, pp. 935–944 (2006)Google Scholar
  19. 19.
    Nayar, S., Ikeuchi, K., Kanade, T.: Shape from interreflections. International Journal of Computer Vision (IJCV) 6(3), 173–195 (1991)Google Scholar
  20. 20.
    O’Toole, M., Mather, J., Kutulakos, K.N.: 3d shape and indirect appearance by structured light transport. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2014)Google Scholar
  21. 21.
    Sato, I., Okabe, T., Sato, Y.: Bispectral photometric stereo based on fluorescence. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2012)Google Scholar
  22. 22.
    Sato, I., Zhang, C.: Image-based separation of reflective and fluorescent components using illumination variant and invariant color. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 35(12), 2866–2877 (2013)Google Scholar
  23. 23.
    Seitz, S.M., Matsushita, Y., Kutulakos, K.N.: A theory of inverse light transport. In: Proc. of International Conference on Computer Vision (ICCV), pp. 1440–1447 (2005)Google Scholar
  24. 24.
    Treibitz, T., Murez, Z., Mitchell, B.G., Kriegman, D.: Shape from fluorescence. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 292–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Wilkie, A., Weidlich, A., Larboulette, C., Purgathofer, W.: A reflectance model for diffuse fluorescent surfaces. In: International Conference on Computer Graphics and Interactive Techniques, pp. 321–331 (2006)Google Scholar
  26. 26.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1) (1980)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ying Fu
    • 1
  • Antony Lam
    • 2
  • Yasuyuki Matsushita
    • 3
  • Imari Sato
    • 4
  • Yoichi Sato
    • 1
  1. 1.The University of TokyoJapan
  2. 2.Saitama UniversityJapan
  3. 3.Microsoft Research AsiaChina
  4. 4.National Institute of InformaticsJapan

Personalised recommendations