Advertisement

Spectra Estimation of Fluorescent and Reflective Scenes by Using Ordinary Illuminants

  • Yinqiang Zheng
  • Imari Sato
  • Yoichi Sato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8693)

Abstract

The spectrum behavior of a typical fluorescent object is regulated by its reflectance, absorption and emission spectra. It was shown that two high-frequency and complementary illuminations in the spectral domain can be used to simultaneously estimate reflectance and emission spectra. In spite of its accuracy, such specialized illuminations are not easily accessible. This motivates us to explore the feasibility of using ordinary illuminants to achieve this task with comparable accuracy. We show that three hyperspectral images under wideband and independent illuminants are both necessary and sufficient, and successfully develop a convex optimization method for solving. We also disclose the reason why using one or two images is inadequate, although embedding the linear low-dimensional models of reflectance and emission would lead to an apparently overconstrained equation system. In addition, we propose a novel four-parameter model to express absorption and emission spectra, which is more compact and discriminative than the linear model. Based on this model, we present an absorption spectra estimation method in the presence of three illuminations. The correctness and accuracy of our proposed model and methods have been verified.

Keywords

Fluorescence reflectance hyperspectral imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alterman, M., Schechner, Y., Weiss, A.: Multiplexed fluorescence unmixing. In: IEEE International Conference on Computational Photography pp. 1–8 (2010)Google Scholar
  2. 2.
    Arnold, B., Beaver, R.: The skew-Cauchy distribution. Statistics & Probability Letters 49(3), 285–290 (2000)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Azzalini, A.: The Skew-Normal and Related Families, 1st edn. Cambridge University Press (2014)Google Scholar
  4. 4.
    Barnard, K.: Color constancy with fluorescent surfaces. In: Proc. of the Color and Imaging Conference, pp. 257–261 (1999)Google Scholar
  5. 5.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Separating the fluorescence and reflectance components of coral spectra. Applied Optics 40(21), 3614–3621 (2001)CrossRefGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization, 1st edn. Cambridge University Press (2004)Google Scholar
  7. 7.
    Chane, C., Mansouri, A., Marzani, F., Boochs, F.: Integration of 3D and multispectral data for cultural heritage applications: survey and perspectives. Image and Vision Computing 31(1), 91–102 (2013)CrossRefGoogle Scholar
  8. 8.
    Fu, Y., Lam, A., Kobashi, Y., Sato, I., Okabe, T., Sato, Y.: Reflectance and fluorescent spectra recovery based on fluorescent chromaticity invariance under varying illumination. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2163–2170 (2014)Google Scholar
  9. 9.
    Fu, Y., Lam, A., Sato, I., Okabe, T., Sato, Y.: Separating reflective and fluorescent components using high frequency illumination in the spectral domain. In: IEEE International Conference on Computer Vision, pp. 457–464 (2013)Google Scholar
  10. 10.
    Han, S., Matsushita, Y., Sato, I., Okabe, T., Sato, Y.: Camera spectral sensitivity estimation from a single image under unknown illumination by using fluorescence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 805–812 (2012)Google Scholar
  11. 11.
    Johnson, G., Fairchild, M.: Full-spectral color calculations in realistic image synthesis. IEEE Computer Graphics and Applications 19(4), 47–53 (1999)CrossRefGoogle Scholar
  12. 12.
    Kim, S., Zhuo, S., Deng, F., Fu, C., Brown, M.: Interactive visualization of hyperspectral images of historical documents. IEEE Trans. Visualization and Computer Graphics 16(6), 1441–1448 (2010)CrossRefGoogle Scholar
  13. 13.
    Lam, A., Sato, I.: Spectral modeling and relighting of reflective-fluorescent scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1452–1459 (2013)Google Scholar
  14. 14.
    Leland, J., Johnson, N., Arecchi, A.: Principles of bispectral fluorescence colorimetry. In: Proc. SPIE, vol. 3140, pp. 76–87 (1997)Google Scholar
  15. 15.
    Maloney, L.: Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. A 3(10), 1673–1683 (1986)CrossRefGoogle Scholar
  16. 16.
    McNamara, G., Gupta, A., Reynaert, J., Coates, T., Boswell, C.: Spectral imaging microscopy web sites and data. Cytometry Part A 69(8), 863–871 (2006)CrossRefGoogle Scholar
  17. 17.
    Park, J., Lee, M., Grossberg, M., Nayar, S.: Multispectral imaging using multiplexed illumination. In : IEEE International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  18. 18.
    Parkkinen, J., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell colors. J. Opt. Soc. Am. A 6(2), 318–322 (1989)CrossRefGoogle Scholar
  19. 19.
    Sato, I., Okabe, T., Sato, Y.: Bispectral photometric stereo based on fluorescence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 270–277 (2012)Google Scholar
  20. 20.
    Suo, J., Bian, L., Chen, F., Dai, Q.: Bispectral coding: compressive and high-quality acquisition of fluorescence and reflectance. Optics Express 22(2), 1697–1712 (2014)CrossRefGoogle Scholar
  21. 21.
    Tominaga, S., Horiuchi, T., Kamiyama, T.: Spectral estimation of fluorescent objects using visible lights and an imaging device. In: Proc. of the Color and Imaging Conference, pp. 352–356 (2011)Google Scholar
  22. 22.
    Treibitz, T., Murez, Z., Mitchell, B.G., Kriegman, D.: Shape from fluorescence. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 292–306. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Sato, I.: Separating reflective and fluorescent components of an image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 185–192 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Yinqiang Zheng
    • 1
  • Imari Sato
    • 1
  • Yoichi Sato
    • 2
  1. 1.National Institute of InformaticsJapan
  2. 2.The University of TokyoJapan

Personalised recommendations