Skip to main content

WGB: Towards a Universal Graph Benchmark

Part of the Lecture Notes in Computer Science book series (LNISA,volume 8585)


Graph data are of growing importance in many recent applications. There are many systems proposed in the last decade for graph processing and analysis. Unfortunately, with the exception of RDF stores, every system uses different datasets and queries to assess its scalability and efficiency. This makes it challenging (and sometimes impossible) to conduct a meaningful comparison. Our aim is to close this gap by introducing Waterloo Graph Benchmark (WGB), a benchmark for graph processing systems that offers an efficient generator that creates dynamic graphs with properties similar to real-life ones. WGB includes the basic graph queries which are used for building graph applications.


  • Graph System
  • Graph Query
  • Separator Character
  • Online Query
  • Reachability Query

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10596-3_6
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-10596-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6. (accessed on 24th May 2013)

  7. 7.


  1. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, N., Baleta, P., Larriba-Pay, J.L.: A discussion on the design of graph database benchmarks. In: Proceedings of 2nd TPC Technology Conference on Performance Evaluation, Measurement and Characterization of Complex Systems, pp. 25–40 (2011)

    Google Scholar 

  2. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over graph databases. In: Proceedings Workshops of 28th International Conference on Data Engineering, pp. 186–189 (2012)

    Google Scholar 

  3. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pp. 135–146 (2010)

    Google Scholar 

  4. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning in the cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

    CrossRef  Google Scholar 

  5. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.: Bigbench: towards an industry standard benchmark for big data analytics. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 1197–1208. ACM (2013)

    Google Scholar 

  6. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Y., Shi, Y., Zhang, S., et al.: Bigdatabench: A big data benchmark suite from internet services (2014). arXiv preprint arXiv:1401.1406

  7. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Ming, Z., Luo, C., Gao, W., Han, R., Yang, Q., Wang, L., Zhan, J.: BDGS: a scalable big data generator suite in big data benchmarking (2014). arXiv preprint arXiv:1401.5465

  9. Appel, A.P., Faloutsos, C., Junior, C.T.: Graph mining techniques: focusing on discriminating between real and synthetic graphs. Bioinformatics: Concepts, Methodologies, Tools, and Applications, vol. 3, pp. 446–464. Information Resources Management Association, USA (2013)

    Google Scholar 

  10. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. J. Seman. Web Inf. Syst. 5(2), 1–24 (2009)

    CrossRef  Google Scholar 

  11. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL benchmark – performance assessment with real queries on real data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  12. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web Seman.: Sci. Serv. Agents World Wide Web 3(2), 158–182 (2005)

    CrossRef  Google Scholar 

  13. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP\(^2\)l SPARQL performance benchmark. In: Proceedings of 25th International Conferrence on Data Engineering, pp. 222–233 (2009)

    Google Scholar 

  14. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and oranges: a comparison of RDF benchmarks and real RDF datasets. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 145–156 (2011)

    Google Scholar 

  15. Aluç, G., Özsu, M.T., Daudjee, K., Hartig, O.: Chameleon-db: a workload-aware robust RDF data management system, University of Waterloo, Technical report, CS-2013-10(2013)

    Google Scholar 

  16. Yu, J., Cheng, J.: Graph reachability queries: a survey. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 181–215. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  17. Spillane, S.R., Birnbaum, J., Bokser, D., Kemp, D., Labouseur, A., Olsen, P.W., Vijayan, J., Hwang, J.-H., Yoon, J.-W.: A demonstration of the G* graph database system. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), Los Alamitos, CA, USA, pp. 1356–1359. IEEE Computer Society (2013)

    Google Scholar 

  18. Aggarwal, C.C., Wang, H.: A survey of clustering algorithms for graph data. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  19. Akoglu, L., Faloutsos, C.: RTG: a recursive realistic graph generator using random typing. Data Min. Knowl. Disc. 19(2), 194–209 (2009)

    MathSciNet  CrossRef  Google Scholar 

  20. Miller, G.A.: Some effects of intermittent silence. Am. J. Psychol. 70(2), 311–314 (1957)

    CrossRef  Google Scholar 

  21. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1), Article 2, pp. 1–41 (2007)

    Google Scholar 

  22. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: a peta-scale graph mining system implementation and observations. In: Proceedings of IEEE International Conference on Data Mining, 2009, pp. 229–238 (2009)

    Google Scholar 

  23. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale iterative data analysis. VLDB J. 21(2), 169–190 (2012)

    CrossRef  Google Scholar 

  24. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of 6th USENIX Symposium on Operating System Design and Implementation, pp. 137–149 (2004)

    Google Scholar 

  25. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)

    CrossRef  Google Scholar 

Download references


This research was partially supported by a fellowship from IBM Centre for Advanced Studies (CAS), Toronto.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Khaled Ammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ammar, K., Özsu, M.T. (2014). WGB: Towards a Universal Graph Benchmark. In: Rabl, T., Raghunath, N., Poess, M., Bhandarkar, M., Jacobsen, HA., Baru, C. (eds) Advancing Big Data Benchmarks. WBDB WBDB 2013 2013. Lecture Notes in Computer Science(), vol 8585. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10595-6

  • Online ISBN: 978-3-319-10596-3

  • eBook Packages: Computer ScienceComputer Science (R0)