BDGS: A Scalable Big Data Generator Suite in Big Data Benchmarking

  • Zijian Ming
  • Chunjie Luo
  • Wanling Gao
  • Rui Han
  • Qiang Yang
  • Lei Wang
  • Jianfeng ZhanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8585)


Data generation is a key issue in big data benchmarking that aims to generate application-specific data sets to meet the 4 V requirements of big data. Specifically, big data generators need to generate scalable data (Volume) of different types (Variety) under controllable generation rates (Velocity) while keeping the important characteristics of raw data (Veracity). This gives rise to various new challenges about how we design generators efficiently and successfully. To date, most existing techniques can only generate limited types of data and support specific big data systems such as Hadoop. Hence we develop a tool, called Big Data Generator Suite (BDGS), to efficiently generate scalable big data while employing data models derived from real data to preserve data veracity. The effectiveness of BDGS is demonstrated by developing six data generators covering three representative data types (structured, semi-structured and unstructured) and three data sources (text, graph, and table data).


Big data Benchmark Data generator Scalable Veracity 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a database benchmark based on the facebook social graph. In: SIGMOD’13 (2013)Google Scholar
  10. 10.
    Barroso, L.A., Hölzle, U.: The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 4(1), 1–108 (2009)CrossRefGoogle Scholar
  11. 11.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  12. 12.
    Fourneau, J.-M., Pekergin, N.: Benchmark. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 179–207. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., Kaynak, C., Popescu, A.D., Ailamaki, A., Falsafi, B.: Clearing the clouds: a study of emerging workloads on modern hardware. In: Proceedings of the 17th Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2012, pp. 1–11 (2011)Google Scholar
  14. 14.
    Gao, W., Zhu, Y., Jia, Z., Luo, C., Wang, L., Li, Z., Zhan, J., Qi, Y., He, Y., Gong, S., et al.: Bigdatabench: a big data benchmark suite from web search engines. In: The Third Workshop on Architectures and Systems for Big Data (ASBD 2013), in conjunction with ISCA 2013 (2013)Google Scholar
  15. 15.
    Ghazal, A.: Big data benchmarking-data model proposal. In: First Workshop on Big Data Benchmarking, San Jose, Califorina (2012)Google Scholar
  16. 16.
    Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.-A.: Bigbench: towards an industry standard benchmark for big data analytics. In: SIGMOD, ACM (2013)Google Scholar
  17. 17.
    Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly generating billion-record synthetic databases. In: ACM SIGMOD Record, vol. 23, pp. 243–252. ACM (1994)Google Scholar
  18. 18.
    Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite: Characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW), pp. 41–51. IEEE (2010)Google Scholar
  19. 19.
  20. 20.
    Jia, Z., Wang, L., Zhan, J., Zhang, L., Luo, C.: Characterizing data analysis workloads in data centers. In: IEEE International Symposium on Workload Characterization (IISWC), IEEE (2013)Google Scholar
  21. 21.
    Jia, Z., Zhou, R., Zhu, C., Wang, L., Gao, W., Shi, Y., Zhan, J., Zhang, L.: The Implications of diverse applications and scalable data sets in benchmarking big data systems. In: Rabl, T., Poess, M., Baru, C., Jacobsen, H.-A. (eds.) WBDB 2012. LNCS, vol. 8163, pp. 44–59. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Lotfi-Kamran, P., Grot, B., Ferdman, M., Volos, S., Kocberber, O., Picorel, J., Adileh, A., Jevdjic, D., Idgunji, S., Ozer, E., et al.: Scale-out processors. In: Proceedings of the 39th International Symposium on Computer Architecture, pp. 500–511. IEEE (2012)Google Scholar
  25. 25.
    Luo, C., Zhan, J., Jia, Z., Wang, L., Zhang, L., Sun, N.: Cloudrank-d: benchmarking and ranking cloud computing systems for data processing applications. Front. Comput. Sci. 6(4), 347–362 (2012)MathSciNetGoogle Scholar
  26. 26.
    Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A Data generator for cloud-scale benchmarking. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 41–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Seltzer, M., Krinsky, D., Smith, K., Zhang, X.: The case for application-specific benchmarking. In: Proceedings of the Seventh Workshop on Hot Topics in Operating Systems, 1999, pp. 102–107. IEEE (1999)Google Scholar
  28. 28.
    Tay, Y.C.: Data generation for application-specific benchmarking. In: VLDB, Challenges and Visions (2011)Google Scholar
  29. 29.
    Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y., Zhang, S., Zhen, C., Lu, G., Zhan, K., Qiu, B.: Bigdatabench: A big data benchmark suite from internet services. In: The 20th IEEE International Symposium on High-Performance Computer Architecture(HPCA) (2014)Google Scholar
  30. 30.
    Zhan, J., Zhang, L., Sun, N., Wang, L., Jia, Z., Luo, C.: High volume computing: Identifying and characterizing throughput oriented workloads in data centers. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), pp. 1712–1721. IEEE (2012)Google Scholar
  31. 31.
    Zhu, Y., Zhan, J., Weng, C., Nambiar, R., Zhang, J., Chen, X., Wang, L.: Generating comprehensive big data workloads as a benchmarking framework. In: The 19th International Conference on Database Systems for Advanced Applications (DASFAA 2014) (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zijian Ming
    • 1
    • 2
  • Chunjie Luo
    • 1
  • Wanling Gao
    • 1
    • 2
  • Rui Han
    • 1
    • 3
  • Qiang Yang
    • 1
  • Lei Wang
    • 1
  • Jianfeng Zhan
    • 1
    Email author
  1. 1.State Key Laboratory Computer Architecture, Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of ComputingImperial College LondonLondonUK

Personalised recommendations