Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

European Conference on Computer Vision

ECCV 2014: Computer Vision – ECCV 2014 pp 105–118Cite as

  1. Home
  2. Computer Vision – ECCV 2014
  3. Conference paper
Consensus of Regression for Occlusion-Robust Facial Feature Localization

Consensus of Regression for Occlusion-Robust Facial Feature Localization

  • Xiang Yu19,
  • Zhe Lin20,
  • Jonathan Brandt20 &
  • …
  • Dimitris N. Metaxas19 
  • Conference paper
  • 23k Accesses

  • 21 Citations

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8692)

Abstract

We address the problem of robust facial feature localization in the presence of occlusions, which remains a lingering problem in facial analysis despite intensive long-term studies. Recently, regression-based approaches to localization have produced accurate results in many cases, yet are still subject to significant error when portions of the face are occluded. To overcome this weakness, we propose an occlusion-robust regression method by forming a consensus from estimates arising from a set of occlusion-specific regressors. That is, each regressor is trained to estimate facial feature locations under the precondition that a particular pre-defined region of the face is occluded. The predictions from each regressor are robustly merged using a Bayesian model that models each regressor’s prediction correctness likelihood based on local appearance and consistency with other regressors with overlapping occlusion regions. After localization, the occlusion state for each landmark point is estimated using a Gaussian MRF semi-supervised learning method. Experiments on both non-occluded and occluded face databases demonstrate that our approach achieves consistently better results over state-of-the-art methods for facial landmark localization and occlusion detection.

Keywords

  • Facial feature localization
  • Consensus of Regression
  • Occlusion detection
  • Face alignment

Download conference paper PDF

References

  1. Asthana, A., Cheng, S., Zafeiriou, S., Pantic, M.: Robust discriminative response map fitting with constrained local models. In: CVPR (2013)

    Google Scholar 

  2. Belhumeur, P., Jacobs, D., Kriegman, D., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: CVPR (2011)

    Google Scholar 

  3. Burgos-Artizzu, X., Perona, P., Dollar, P.: Robust face landmark estimation under occlusion. In: ICCV (2013)

    Google Scholar 

  4. Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. In: CVPR (2012)

    Google Scholar 

  5. Cheng, X., Sridharan, S., Saragih, J., Lucey, S.: Rank minimization across appearance and shape for aam ensemble fitting. In: ICCV (2013)

    Google Scholar 

  6. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  7. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    CrossRef  Google Scholar 

  8. Cootes, T.F., Ionita, M.C., Lindner, C., Sauer, P.: Robust and accurate shape model fitting using random forest regression voting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 278–291. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Cristinacce, D., Cootes, T.: Automatic feature localization with constrained local models. Pattern Recognition 41(10), 3054–3067 (2007)

    CrossRef  Google Scholar 

  10. Cristinacce, D., Cootes, T.: Boosted regression active shape models. In: BMVC (2007)

    Google Scholar 

  11. Dantone, M., Gall, J., Fanelli, G., Gool, L.: Real-time facial feature detection using conditional regression forests. In: CVPR (2012)

    Google Scholar 

  12. Dollar, P., Welinder, P., Perona, P.: Cascaded pose regression. In: CVPR (2010)

    Google Scholar 

  13. Huang, Y., Liu, Q., Metaxas, D.: A component based deformable model for generalized face alignment. In: ICCV (2007)

    Google Scholar 

  14. Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interactive facial feature localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 679–692. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. Liang, L., Xiao, R., Wen, F., Sun, J.: Face alignment via component-based discriminative search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 72–85. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  16. Martinez, B., Valstar, M., Binefa, X., Pantic, M.: Local evidence aggregation for regression-based faical point detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(5), 1149–1163 (2013)

    CrossRef  Google Scholar 

  17. Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)

    CrossRef  Google Scholar 

  18. Rivera, S., Martinez, A.: Learning deformable shape manifolds. Pattern Recognition 45(4), 1792–1801 (2012)

    CrossRef  Google Scholar 

  19. Roh, M., Oguri, T., Kanade, T.: Face alignment robust to occlusion. In: Automatic Face and Gesture Recognition (2011)

    Google Scholar 

  20. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: 300 faces in-the-wild challenge: The first facial landmark localization challenge. In: ICCV Workshop (2013)

    Google Scholar 

  21. Saragih, J., Lucey, S., Cohn, J.: Deformable model fitting by regularized landmark mean-shift. International Journal of Computer Vision 91(2), 200–215 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  22. Smith, B.M., Zhang, L.: Joint face alignment with non-parametric shape models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 43–56. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  23. Tzimiropoulos, G., Pantic, M.: Optimization problems for fast aam fitting in-the-wild. In: ICCV (2013)

    Google Scholar 

  24. Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: CVPR (2010)

    Google Scholar 

  25. Wang, X., Han, T., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: ICCV (2011)

    Google Scholar 

  26. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: CVPR (2013)

    Google Scholar 

  27. Yang, F., Huang, J., Metaxas, D.N.: Sparse shape registration for occluded facial feature localization. In: Automatic Face and Gesture Recognition (2011)

    Google Scholar 

  28. Yang, H., Patras, I.: Sieving regression forest votes for facial feature detection in the wild. In: ICCV (2013)

    Google Scholar 

  29. Yu, X., Huang, J., Zhang, S., Yan, W., Metaxas, D.N.: Pose-free facial landmark fitting via optimized part mixtures and cascaded deformable shape model. In: ICCV (2013)

    Google Scholar 

  30. Yu, X., Yang, F., Huang, J., Metaxas, D.N.: Explicit occlusion detection based deformable fitting for facial landmark localization. In: Automatic Face and Gesture Recognition (2013)

    Google Scholar 

  31. Zhou, F., Brandt, J., Lin, Z.: Exemplar-based graph matching for robust facial landmark localization. In: ICCV (2013)

    Google Scholar 

  32. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML (2003)

    Google Scholar 

  33. Zhu, X., Ramanan, D.: Face detection, pose estimation and landmark localization in the wild. In: CVPR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Rutgers University, Piscataway, NJ, 08854, USA

    Xiang Yu & Dimitris N. Metaxas

  2. Adobe Research, San Jose, CA, 95110, USA

    Zhe Lin & Jonathan Brandt

Authors
  1. Xiang Yu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Zhe Lin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jonathan Brandt
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Dimitris N. Metaxas
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Computer Science, University of Toronto, 6 King’s College Road, M5H 3S5, Toronto, ON, Canada

    David Fleet

  2. Faculty of Electrical Engineering, Department of Cybernetics, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic

    Tomas Pajdla

  3. Max-Planck-Institut für Informatik, Campus E1 4, 66123, Saarbrücken, Germany

    Bernt Schiele

  4. KU Leuven, ESAT - PSI, iMinds, Kasteelpark Arenberg 10, Bus 2441, 3001, Leuven, Belgium

    Tinne Tuytelaars

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yu, X., Lin, Z., Brandt, J., Metaxas, D.N. (2014). Consensus of Regression for Occlusion-Robust Facial Feature Localization. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8692. Springer, Cham. https://doi.org/10.1007/978-3-319-10593-2_8

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-10593-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10592-5

  • Online ISBN: 978-3-319-10593-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.226.122.122

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.