Scene Chronology

  • Kevin Matzen
  • Noah Snavely
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)


We present a new method for taking an urban scene reconstructed from a large Internet photo collection and reasoning about its change in appearance through time. Our method estimates when individual 3D points in the scene existed, then uses spatial and temporal affinity between points to segment the scene into spatio-temporally consistent clusters. The result of this segmentation is a set of spatio-temporal objects that often correspond to meaningful units, such as billboards, signs, street art, and other dynamic scene elements, along with estimates of when each existed. Our method is robust and scalable to scenes with hundreds of thousands of images and billions of noisy, individual point observations. We demonstrate our system on several large-scale scenes, and demonstrate an application to time stamping photos. Our work can serve to chronicle a scene over time, documenting its history and discovering dynamic elements in a way that can be easily explored and visualized.


Structure from motion temporal reasoning 4D modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-319-10584-0_40_MOESM1_ESM.pdf (62 kb)
Electronic Supplementary Material (PDF 63 KB)


  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)Google Scholar
  2. 2.
    Frahm, J.-M., et al.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Klingner, B., Martin, D., Roseborough, J.: Street view motion-from-structure-from-motion. In: ICCV (2013)Google Scholar
  4. 4.
    Schindler, G., Dellaert, F., Kang, S.B.: Inferring temporal order of images from 3D structure. In: CVPR (2007)Google Scholar
  5. 5.
    Schindler, G., Dellaert, F.: Probabilistic temporal inference on reconstructed 3D scenes. In: CVPR (2010)Google Scholar
  6. 6.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR (2011)Google Scholar
  7. 7.
    Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR, pp. 690–696 (2000)Google Scholar
  8. 8.
    Vedula, S., Baker, S., Rander, P., Collins, R.T., Kanade, T.: Three-dimensional scene flow. PAMI 27(3) (2005)Google Scholar
  9. 9.
    Ulusoy, A.O., Biris, O., Mundy, J.L.: Dynamic probabilistic volumetric models. In: ICCV (2013)Google Scholar
  10. 10.
    Ballan, L., Brostow, G.J., Puwein, J., Pollefeys, M.: Unstructured video-based rendering: Interactive exploration of casually captured videos. In: SIGGRAPH (2010)Google Scholar
  11. 11.
    Basha, T., Moses, Y., Avidan, S.: Photo sequencing. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 654–667. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored Time-Lapse Video. In: SIGGRAPH (2007)Google Scholar
  13. 13.
    Jacobs, N., Roman, N., Pless, R.: Consistent temporal variations in many outdoor scenes. In: CVPR (2007)Google Scholar
  14. 14.
    Rubinstein, M., Liu, C., Sand, P., Durand, F., Freeman, W.T.: Motion denoising with application to time-lapse photography. In: CVPR (2011)Google Scholar
  15. 15.
    Pollard, T., Mundy, J.: Change detection in a 3-D world. In: CVPR, pp. 1–6 (June 2007)Google Scholar
  16. 16.
    Taneja, A., Ballan, L., Pollefeys, M.: Image based detection of geometric changes in urban environments. In: ICCV (November 2011)Google Scholar
  17. 17.
    Taneja, A., Ballan, L., Pollefeys, M.: City-scale change detection in cadastral 3D models using images. In: CVPR (June 2013)Google Scholar
  18. 18.
    Fard, M.G., Peña-Mora, F., Savarese, S.: Monitoring changes of 3D building elements from unordered photo collections. In: ICCV Workshops (2011)Google Scholar
  19. 19.
    Sinha, S., Steedley, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV (2009)Google Scholar
  20. 20.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: ICCV (2009)Google Scholar
  21. 21.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo collections. IJCV 80(2), 189–210 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards Internet-scale multi-view stereo. In: CVPR (2010)Google Scholar
  24. 24.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. PAMI 32(8), 1362–1376 (2009)CrossRefGoogle Scholar
  25. 25.
    Ni, K., Jin, H., Dellaert, F.: GroupSAC: Efficient consensus in the presence of groupings. In: ICCV (2009)Google Scholar
  26. 26.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: Int. Conf. on Computer Vision Theory and Application (2009)Google Scholar
  27. 27.
    Lee, Y.J., Efros, A.A., Hebert, M.: Style-aware mid-level representation for discovering visual connections in space and time. In: ICCV (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kevin Matzen
    • 1
  • Noah Snavely
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations