OTC: A Novel Local Descriptor for Scene Classification

  • Ran Margolin
  • Lihi Zelnik-Manor
  • Ayellet Tal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)


Scene classification is the task of determining the scene type in which a photograph was taken. In this paper we present a novel local descriptor suited for such a task: Oriented Texture Curves (OTC). Our descriptor captures the texture of a patch along multiple orientations, while maintaining robustness to illumination changes, geometric distortions and local contrast differences. We show that our descriptor outperforms all state-of-the-art descriptors for scene classification algorithms on the most extensive scene classification benchmark to-date.


local descriptor scene classification scene recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  3. 3.
    Do, C., Manfredo, P.: Differential geometry of curves and surfaces, vol. 2. Prentice-Hall Englewood Cliffs (1976)Google Scholar
  4. 4.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  6. 6.
    Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale visual recognition. In: ICCV, pp. 2072–2079 (2011)Google Scholar
  7. 7.
    Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. CoRR (2014)Google Scholar
  8. 8.
    Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single image. In: CVPR, pp. 1–8 (2008)Google Scholar
  9. 9.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. IJCV 75(1), 151–172 (2007)CrossRefGoogle Scholar
  10. 10.
    Koenderink, J.J., Van Doorn, A.J.: The structure of locally orderless images. IJCV 31(2-3), 159–168 (1999)CrossRefGoogle Scholar
  11. 11.
    Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with fisher vectors for image categorization. In: ICCV, pp. 1487–1494 (2011)Google Scholar
  12. 12.
    Kwitt, R., Vasconcelos, N., Rasiwasia, N.: Scene recognition on the semantic manifold. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 359–372. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  14. 14.
    Li, Q., Wu, J., Tu, Z.: Harvesting mid-level visual concepts from large-scale internet images. In: CVPR, pp. 851–858 (2013)Google Scholar
  15. 15.
    Lin, D., Lu, C., Liao, R., Jia, J.: Learning important spatial pooling regions for scene classification. In: CVPR (2014)Google Scholar
  16. 16.
    Liu, L., Fieguth, P., Kuang, G., Zha, H.: Sorted random projections for robust texture classification. In: ICCV, pp. 391–398 (2011)Google Scholar
  17. 17.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157 (1999)Google Scholar
  18. 18.
    Meng, X., Wang, Z., Wu, L.: Building global image features for scene recognition. Pattern Recognition 45(1), 373–380 (2012)CrossRefGoogle Scholar
  19. 19.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  21. 21.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Oliva, A., Torralba, A.: The role of context in object recognition. Trends in Cognitive Sciences 11(12), 520–527 (2007)CrossRefGoogle Scholar
  23. 23.
    Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: CVPR (2009)Google Scholar
  24. 24.
    Rabiner, L.R., Juang, B.H.: Fundamentals of speech recognition. Prentice Hall (1993)Google Scholar
  25. 25.
    Rasiwasia, N., Vasconcelos, N.: Scene classification with low-dimensional semantic spaces and weak supervision. In: CVPR, pp. 1–6 (2008)Google Scholar
  26. 26.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR, pp. 1–8 (2007)Google Scholar
  27. 27.
    Shen, L., Wang, S., Sun, G., Jiang, S., Huang, Q.: Multi-level discriminative dictionary learning towards hierarchical visual categorization. In: CVPR, pp. 383–390 (2013)Google Scholar
  28. 28.
    Singh, S., Gupta, A., Efros, A.A.: Unsupervised discovery of mid-level discriminative patches. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 73–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)Google Scholar
  30. 30.
    Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: CVPR, p. I-488 (2004)Google Scholar
  31. 31.
    Su, Y., Jurie, F.: Improving image classification using semantic attributes. IJCV 100(1), 59–77 (2012)CrossRefGoogle Scholar
  32. 32.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. IJCV 72(2), 133–157 (2007)CrossRefGoogle Scholar
  33. 33.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: ICCV, pp. 603–610 (2011)Google Scholar
  34. 34.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492 (2010)Google Scholar
  35. 35.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ran Margolin
    • 1
  • Lihi Zelnik-Manor
    • 1
  • Ayellet Tal
    • 1
  1. 1.TechnionHaifaIsrael

Personalised recommendations