OTC: A Novel Local Descriptor for Scene Classification

  • Ran Margolin
  • Lihi Zelnik-Manor
  • Ayellet Tal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)

Abstract

Scene classification is the task of determining the scene type in which a photograph was taken. In this paper we present a novel local descriptor suited for such a task: Oriented Texture Curves (OTC). Our descriptor captures the texture of a patch along multiple orientations, while maintaining robustness to illumination changes, geometric distortions and local contrast differences. We show that our descriptor outperforms all state-of-the-art descriptors for scene classification algorithms on the most extensive scene classification benchmark to-date.

Keywords

local descriptor scene classification scene recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  3. 3.
    Do, C., Manfredo, P.: Differential geometry of curves and surfaces, vol. 2. Prentice-Hall Englewood Cliffs (1976)Google Scholar
  4. 4.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  6. 6.
    Gao, T., Koller, D.: Discriminative learning of relaxed hierarchy for large-scale visual recognition. In: ICCV, pp. 2072–2079 (2011)Google Scholar
  7. 7.
    Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. CoRR (2014)Google Scholar
  8. 8.
    Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single image. In: CVPR, pp. 1–8 (2008)Google Scholar
  9. 9.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. IJCV 75(1), 151–172 (2007)CrossRefGoogle Scholar
  10. 10.
    Koenderink, J.J., Van Doorn, A.J.: The structure of locally orderless images. IJCV 31(2-3), 159–168 (1999)CrossRefGoogle Scholar
  11. 11.
    Krapac, J., Verbeek, J., Jurie, F.: Modeling spatial layout with fisher vectors for image categorization. In: ICCV, pp. 1487–1494 (2011)Google Scholar
  12. 12.
    Kwitt, R., Vasconcelos, N., Rasiwasia, N.: Scene recognition on the semantic manifold. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 359–372. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  14. 14.
    Li, Q., Wu, J., Tu, Z.: Harvesting mid-level visual concepts from large-scale internet images. In: CVPR, pp. 851–858 (2013)Google Scholar
  15. 15.
    Lin, D., Lu, C., Liao, R., Jia, J.: Learning important spatial pooling regions for scene classification. In: CVPR (2014)Google Scholar
  16. 16.
    Liu, L., Fieguth, P., Kuang, G., Zha, H.: Sorted random projections for robust texture classification. In: ICCV, pp. 391–398 (2011)Google Scholar
  17. 17.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, vol. 2, pp. 1150–1157 (1999)Google Scholar
  18. 18.
    Meng, X., Wang, Z., Wu, L.: Building global image features for scene recognition. Pattern Recognition 45(1), 373–380 (2012)CrossRefGoogle Scholar
  19. 19.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  21. 21.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Oliva, A., Torralba, A.: The role of context in object recognition. Trends in Cognitive Sciences 11(12), 520–527 (2007)CrossRefGoogle Scholar
  23. 23.
    Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: CVPR (2009)Google Scholar
  24. 24.
    Rabiner, L.R., Juang, B.H.: Fundamentals of speech recognition. Prentice Hall (1993)Google Scholar
  25. 25.
    Rasiwasia, N., Vasconcelos, N.: Scene classification with low-dimensional semantic spaces and weak supervision. In: CVPR, pp. 1–6 (2008)Google Scholar
  26. 26.
    Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR, pp. 1–8 (2007)Google Scholar
  27. 27.
    Shen, L., Wang, S., Sun, G., Jiang, S., Huang, Q.: Multi-level discriminative dictionary learning towards hierarchical visual categorization. In: CVPR, pp. 383–390 (2013)Google Scholar
  28. 28.
    Singh, S., Gupta, A., Efros, A.A.: Unsupervised discovery of mid-level discriminative patches. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 73–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  29. 29.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: ICCV, pp. 1470–1477 (2003)Google Scholar
  30. 30.
    Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: CVPR, p. I-488 (2004)Google Scholar
  31. 31.
    Su, Y., Jurie, F.: Improving image classification using semantic attributes. IJCV 100(1), 59–77 (2012)CrossRefGoogle Scholar
  32. 32.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. IJCV 72(2), 133–157 (2007)CrossRefGoogle Scholar
  33. 33.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: ICCV, pp. 603–610 (2011)Google Scholar
  34. 34.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492 (2010)Google Scholar
  35. 35.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ran Margolin
    • 1
  • Lihi Zelnik-Manor
    • 1
  • Ayellet Tal
    • 1
  1. 1.TechnionHaifaIsrael

Personalised recommendations