Advertisement

Person Re-Identification Using Kernel-Based Metric Learning Methods

  • Fei Xiong
  • Mengran Gou
  • Octavia Camps
  • Mario Sznaier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8695)

Abstract

Re-identification of individuals across camera networks with limited or no overlapping fields of view remains challenging in spite of significant research efforts. In this paper, we propose the use, and extensively evaluate the performance, of four alternatives for re-ID classification: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discriminant Analysis, Marginal Fisher Analysis and a ranking ensemble voting scheme, used in conjunction with different sizes of sets of histogram-based features and linear, χ 2 and RBF-χ 2 kernels. Comparisons against the state-of-art show significant improvements in performance measured both in terms of Cumulative Match Characteristic curves (CMC) and Proportion of Uncertainty Removed (PUR) scores on the challenging VIPeR, iLIDS, CAVIAR and 3DPeS datasets.

Keywords

Feature Vector Ranking Algorithm Camera Network Hinge Loss Scatter Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

978-3-319-10584-0_1_MOESM1_ESM.mpg (20 mb)
Electronic Supplementary Material (MPG 20,504 KB)
978-3-319-10584-0_1_MOESM2_ESM.zip (0 kb)
Electronic Supplementary Material (ZIP 7 KB)

References

  1. 1.
    An, L., Kafai, M., Yang, S., Bhanu, B.: Reference-based person re-identification. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 244–249 (August 2013)Google Scholar
  2. 2.
    Bak, S., Corvee, E., Brémond, F., Thonnat, M.: Person re-identification using spatial covariance regions of human body parts. In: 2010 Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 435–440. IEEE (2010)Google Scholar
  3. 3.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Multiple-shot human re-identification by mean riemannian covariance grid. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 179–184. IEEE (2011)Google Scholar
  4. 4.
    Baltieri, D., Vezzani, R., Cucchiara, R.: 3dpes: 3d people dataset for surveillance and forensics. In: Proceedings of the 1st International ACM Workshop on Multimedia access to 3D Human Objects, Scottsdale, Arizona, USA, pp. 59–64 (November 2011)Google Scholar
  5. 5.
    Bauml, M., Stiefelhagen, R.: Evaluation of local features for person re-identification in image sequences. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 291–296. IEEE (2011)Google Scholar
  6. 6.
    Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local features for human characterization and re-identification. Computer Vision and Image Understanding 117(2), 130–144 (2013)Google Scholar
  7. 7.
    Bedagkar-Gala, A., Shah, S.K.: A survey of approaches and trends in person re-identification. In: Image and Vision Computing (2014)Google Scholar
  8. 8.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: British Machine Vision Conference (BMVC), pp. 1–68 (2011)Google Scholar
  9. 9.
    Dantcheva, A., Dugelay, J.L.: Frontal-to-side face re-identification based on hair, skin and clothes patches. In: 2011 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 309–313 (August 2011)Google Scholar
  10. 10.
    Doretto, G., Sebastian, T., Tu, P., Rittscher, J.: Appearance-based person reidentification in camera networks: problem overview and current approaches. Journal of Ambient Intelligence and Humanized Computing 2(2), 127–151 (2011)CrossRefGoogle Scholar
  11. 11.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2360–2367. IEEE (2010)Google Scholar
  12. 12.
    Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR (2006)Google Scholar
  13. 13.
    Gong, S., Cristani, M., Yan, S., Loy, C.C.: Person Re-Identification. Springer, London (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric learning from equivalence constraints. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2288–2295. IEEE (2012)Google Scholar
  16. 16.
    Kuo, C.-H., Khamis, S., Shet, V.: Person re-identification using semantic color names and rankboost. In: IEEE Workshop on Applications of Computer Vision, vol. 0, pp. 281–287 (2013)Google Scholar
  17. 17.
    Li, W., Wang, X.: Locally aligned feature transforms across views. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3594–3601 (June 2013)Google Scholar
  18. 18.
    Li, Z., Chang, S., Liang, F., Huang, T.S., Cao, L., Smith, J.R.: Learning locally-adaptive decision functions for person verification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3610–3617. IEEE (2013)Google Scholar
  19. 19.
    Loy, C.C., Liu, C., Gong, S.: Person re-identification by manifold ranking. In: IEEE International Conference on Image Processing, vol. 20 (2013)Google Scholar
  20. 20.
    Mignon, A., Jurie, F.: Pcca: A new approach for distance learning from sparse pairwise constraints. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2666–2672. IEEE (2012)Google Scholar
  21. 21.
    Pedagadi, S., Orwell, J., Velastin, S., Boghossian, B.: Local fisher discriminant analysis for pedestrian re-identification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3318–3325. IEEE (2013)Google Scholar
  22. 22.
    Sugiyama, M.: Local fisher discriminant analysis for supervised dimensionality reduction. In: 23rd International Conference on Machine Learning, pp. 905–912. ACM (2006)Google Scholar
  23. 23.
    Vezzani, R., Baltieri, D., Cucchiara, R.: People reidentification in surveillance and forensics: A survey. ACM Computing Surveys (CSUR) 46(2), 29 (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  25. 25.
    Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: CVPR (2007)Google Scholar
  26. 26.
    Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)CrossRefGoogle Scholar
  27. 27.
    Zhang, T., Oles, F.: Text categorization based on regularized linear classification methods. Information Retrieval 4, 5–31 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zhao, R., Ouyang, W., Wang, X.: Person re-identification by salience matching. In: ICCV (2013)Google Scholar
  29. 29.
    Zheng, W., Gong, S., Xiang, T.: Re-identification by relative distance comparison. PAMI 35(3), 653–668 (2013)CrossRefGoogle Scholar
  30. 30.
    Zheng, W.S., Gong, S., Xiang, T.: Associating groups of people. In: BMVC (2009)Google Scholar
  31. 31.
    Zheng, W.S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 649–656. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fei Xiong
    • 1
  • Mengran Gou
    • 1
  • Octavia Camps
    • 1
  • Mario Sznaier
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringNortheastern UniversityBostonUSA

Personalised recommendations