Abstract
We propose a multi-atlas-based framework to label brain anatomies in magnetic resonance (MR) images, by constructing a hierarchical structure of atlas forests. We start by training the atlas forests in accordance to individual atlases, and then cluster atlas forests with similar labeling performances into several groups. For each group, a new representative forest is re-trained, based on all atlas images associated with the atlas forests in the group, as well as the tentative label maps output by the clustered atlas forests. This clustering and re-training procedure is conducted iteratively to obtain a hierarchical structure of atlas forests. When applied to an unlabeled image for testing, only the suitable trained atlas forests will be selected from the hierarchical structure. Hence the labeling result of the test image is fused from the outputs of selected atlas forests. Experimental results show that the proposed framework can significantly improve the labeling performance compared to the state-of-the-art method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: Leap: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)
Jia, H., Yap, P.T., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. NeuroImage 59(1), 422–430 (2012)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Wu, G., Wang, Q., Zhang, D., Nie, F., Huang, H., Shen, D.: A generative probability model of joint label fusion for multi-atlas based brain segmentation. Medical Image Analysis 18(6), 881–890 (2014)
Zikic, D., Glocker, B., Criminisi, A.: Atlas encoding by randomized forests for efficient label propagation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 66–73. Springer, Heidelberg (2013)
Breiman, L.: Random forests. Machine Learning (2001)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)
Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(10), 1744–1757 (2010)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46(3), 726–738 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhang, L., Wang, Q., Gao, Y., Wu, G., Shen, D. (2014). Learning of Atlas Forest Hierarchy for Automatic Labeling of MR Brain Images. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-10581-9_40
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10580-2
Online ISBN: 978-3-319-10581-9
eBook Packages: Computer ScienceComputer Science (R0)