Skip to main content

Sparse Discriminative Feature Selection for Multi-class Alzheimer’s Disease Classification

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8679))

Included in the following conference series:

Abstract

In neuroimaging studies, high dimensionality and small sample size have been always an issue, and it is common to apply a dimension reduction method to avoid the over-fitting problem. Broadly, there are two different approaches in reducing the feature dimensionality: feature selection and subspace learning. When it comes to the feature interpretability, the feature selection approach such as the sparse regularized linear regression method is preferable to the subspace learning methods, especially in Alzheimer’s Disease (AD) diagnosis. However, based on recent machine learning researches, the subspace learning methods presented promising results in various applications. To this end, in this work, we propose a novel method for discriminative feature selection by combining two conceptually different methodologies of feature selection and subspace learning in a unified framework. Specifically, we integrate the ideas of Fisher’s linear discriminant analysis and locality preserving projection, which consider, respectively, the global and local information inherent in observations, in a regularized least square regression model. With the help of global and local information in data, we select class-discriminative and noise-resistant features that thus help enhance classification performance. Furthermore, unlike the previous methods that mostly considered only a binary classification, in this paper, we consider a multi-class classification problem in AD diagnosis. Our experiments on the Alzheimer’s Disease Neuroimaging Initiative dataset showed the efficacy of the proposed method by enhancing the performances in multi-class AD classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning 73(3), 243–272 (2008)

    Article  Google Scholar 

  2. Chételat, G., Eustache, F., Viader, F., Sayette, V.D.L., Pélerin, A., Mézenge, F., Hannequin, D., Dupuy, B., Baron, J.C., Desgranges, B.: FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11(1), 14–25 (2005)

    Article  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons (2012)

    Google Scholar 

  4. Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B.B., Gee, J.C., Wang, J., Shen, D.: Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage 36(4), 1189–1199 (2007)

    Article  Google Scholar 

  5. Franke, K., Ziegler, G., Klöppel, S., Gaser, C.: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. NeuroImage 50(3), 883–892 (2010)

    Article  Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27(2), 83–85 (2005)

    Google Scholar 

  7. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 1–8 (2005)

    Google Scholar 

  8. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage 44(4), 1415–1422 (2009)

    Article  Google Scholar 

  9. Nesterov, Y.: Introductory lectures on convex optimization: a basic course, vol. 87 (2004)

    Google Scholar 

  10. Nie, F., Huang, H., Cai, X., Ding, C.H.Q.: Efficient and robust feature selection via joint ℓ2,1-norms minimization. In: NIPS, pp. 1813–1821 (2010)

    Google Scholar 

  11. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L.: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 115–123. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Wang, H., Nie, F., Huang, H., Risacher, S.L., Saykin, A.J., Shen, L., et al.: Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics 28(12), i127–i136 (2012)

    Google Scholar 

  14. Wee, C.Y., Yap, P.T., Zhang, D., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Identification of MCI individuals using structural and functional connectivity networks. Neuroimage 59(3), 2045–2056 (2012)

    Article  Google Scholar 

  15. Ye, J.: Least squares linear discriminant analysis. In: ICML, pp. 1087–1093 (2007)

    Google Scholar 

  16. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  Google Scholar 

  17. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)

    Article  Google Scholar 

  18. Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C.: Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognition 45(8), 3003–3016 (2012)

    Article  MATH  Google Scholar 

  19. Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J.: Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognition 46(1), 215–229 (2013)

    Article  MATH  Google Scholar 

  20. Zhu, X., Suk, H.I., Shen, D.: Matrix-similarity based loss function and feature selection for Alzheimer’s Disease diagnosis. In: CVPR (2014)

    Google Scholar 

  21. Zhu, X., Suk, H.I., Shen, D.: Multi-modality canonical feature selection for Alzheimer’s disease diagnosis. In: Golland, P. (ed.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 162–169. Springer, Heidelberg (2014)

    Google Scholar 

  22. Zhu, X., Suk, H.I., Shen, D.: A novel matrix-similarity based loss function for joint regression and classification in AD diagnosis. NeuroImage 14, 1–30 (2014)

    Article  Google Scholar 

  23. Zhu, X., Suk, H.-I., Shen, D.: A novel multi-relation regularization method for regression and classification in AD diagnosis. In: Golland, P. (ed.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 401–408. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, X., Suk, HI., Shen, D. (2014). Sparse Discriminative Feature Selection for Multi-class Alzheimer’s Disease Classification. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics