Skip to main content

Manifold Alignment and Transfer Learning for Classification of Alzheimer’s Disease

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8679)

Abstract

Magnetic resonance (MR) images acquired at different field strengths have different intensity appearance and thus cannot be easily combined into a single manifold space. A framework to learn a joint low-dimensional representation of brain MR images, acquired either at 1.5 or 3 Tesla, is proposed. In this manifold subspace, knowledge can be shared and transfered between the two distinct but related datasets. The joint manifold subspace is built using an adaptation of Laplacian eigenmaps (LE) from a data-driven region of interest (ROI). The ROI is learned using sparse regression to perform simultaneous variable selection at multiple levels of alignment to the MNI152 template. Additionally, a stability selection re-sampling scheme is used to reduce sampling bias while learning the ROI. Knowledge about the intrinsic embedding coordinates of different instances, common to both feature spaces, is used to constrain their alignment in the joint manifold. Alzheimer’s Disease (AD) classification results obtained with the proposed approach are presented using data from more than 1500 subjects from ADNI-1, ADNI-GO and ADNI-2 datasets. Results calculated using the learned joint manifold in general outperform those obtained in each independent manifold. Accuracies calculated on ADNI-1 are comparable to other state-of-the-art approaches. To our knowledge, classification accuracies have not been reported before on the complete ADNI (-1, -GO and -2) cohort combined.

Keywords

  • Mild Cognitive Impairment
  • Locally Linear Embedding
  • Cognitive Normal
  • Magnetic Resonance Image Intensity
  • Laplacian Eigenmaps

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10581-9_10
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-10581-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ho, A.J., Hua, X., Lee, S., Leow, A.D., Yanovsky, I., Gutman, B., Dinov, I.D., Leporé, N., Stein, J.L., Toga, A.W., Jack, C.R., Bernstein, M.A., Reiman, E.M., Harvey, D.J., Kornak, J., Schuff, N., Alexander, G.E., Weiner, M.W., Thompson, P.M.: Comparing 3 T and 1.5 T MRI for tracking Alzheimer’s disease progression with tensor-based morphometry. Human Brain Mapping 31(4), 499–514 (2010)

    CrossRef  Google Scholar 

  2. Liu, X., Tosun, D., Weiner, M.W., Schuff, N.: Locally Linear Embedding (LLE) for MRI based Alzheimer’s Disease Classification. NeuroImage 83, 148–157 (2013)

    CrossRef  Google Scholar 

  3. Cheng, B., Zhang, D., Jie, B., Shen, D.: Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 251–259. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  4. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D., Soininen, H., Lötjönen, J.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS One 6(10), e25446 (2011)

    Google Scholar 

  5. Guerrero, R., Wolz, R., Rao, A.W., Rueckert, D.: Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO. NeuroImage 94C, 275–286 (2014)

    CrossRef  Google Scholar 

  6. Wang, C.: A geometric framework for transfer learning using manifold alignment. Ph.D Thesis (2010)

    Google Scholar 

  7. Ham, J., Lee, D., Saul, L.: Semi-supervised alignment of manifolds. In: 10th International Workshop on Artificial Intelligence and Statistics (2005)

    Google Scholar 

  8. Baumgartner, C.F., Kolbitsch, C., McClelland, J.R., Rueckert, D., King, A.P.: Groupwise simultaneous manifold alignment for high-resolution dynamic MR imaging of respiratory motion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 232–243. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  9. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B 67, 301–320 (2005)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(4), 417–473 (2010)

    CrossRef  MathSciNet  Google Scholar 

  11. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  12. Heckemann, R.A., Ledig, C., Aljabar, P., Gray, K.R., Rueckert, D., Hajnal, J.V., Hammers, A.: Label propagation using group agreement – DISPATCH. In: MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling, pp. 75–78 (2012)

    Google Scholar 

  13. Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072–1081 (1999)

    CrossRef  Google Scholar 

  14. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guerrero, R., Ledig, C., Rueckert, D. (2014). Manifold Alignment and Transfer Learning for Classification of Alzheimer’s Disease. In: Wu, G., Zhang, D., Zhou, L. (eds) Machine Learning in Medical Imaging. MLMI 2014. Lecture Notes in Computer Science, vol 8679. Springer, Cham. https://doi.org/10.1007/978-3-319-10581-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10581-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10580-2

  • Online ISBN: 978-3-319-10581-9

  • eBook Packages: Computer ScienceComputer Science (R0)