Ho, A.J., Hua, X., Lee, S., Leow, A.D., Yanovsky, I., Gutman, B., Dinov, I.D., Leporé, N., Stein, J.L., Toga, A.W., Jack, C.R., Bernstein, M.A., Reiman, E.M., Harvey, D.J., Kornak, J., Schuff, N., Alexander, G.E., Weiner, M.W., Thompson, P.M.: Comparing 3 T and 1.5 T MRI for tracking Alzheimer’s disease progression with tensor-based morphometry. Human Brain Mapping 31(4), 499–514 (2010)
CrossRef
Google Scholar
Liu, X., Tosun, D., Weiner, M.W., Schuff, N.: Locally Linear Embedding (LLE) for MRI based Alzheimer’s Disease Classification. NeuroImage 83, 148–157 (2013)
CrossRef
Google Scholar
Cheng, B., Zhang, D., Jie, B., Shen, D.: Sparse Multimodal Manifold-Regularized Transfer Learning for MCI Conversion Prediction. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 251–259. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D.P., Rueckert, D., Soininen, H., Lötjönen, J.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS One 6(10), e25446 (2011)
Google Scholar
Guerrero, R., Wolz, R., Rao, A.W., Rueckert, D.: Manifold population modeling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO. NeuroImage 94C, 275–286 (2014)
CrossRef
Google Scholar
Wang, C.: A geometric framework for transfer learning using manifold alignment. Ph.D Thesis (2010)
Google Scholar
Ham, J., Lee, D., Saul, L.: Semi-supervised alignment of manifolds. In: 10th International Workshop on Artificial Intelligence and Statistics (2005)
Google Scholar
Baumgartner, C.F., Kolbitsch, C., McClelland, J.R., Rueckert, D., King, A.P.: Groupwise simultaneous manifold alignment for high-resolution dynamic MR imaging of respiratory motion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 232–243. Springer, Heidelberg (2013)
CrossRef
Google Scholar
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B 67, 301–320 (2005)
CrossRef
MATH
MathSciNet
Google Scholar
Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(4), 417–473 (2010)
CrossRef
MathSciNet
Google Scholar
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)
Google Scholar
Heckemann, R.A., Ledig, C., Aljabar, P., Gray, K.R., Rueckert, D., Hajnal, J.V., Hammers, A.: Label propagation using group agreement – DISPATCH. In: MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling, pp. 75–78 (2012)
Google Scholar
Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magnetic Resonance in Medicine 42(6), 1072–1081 (1999)
CrossRef
Google Scholar
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)
CrossRef
Google Scholar