Agarwal, S.: The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In: SDM, pp. 839–850. Society for Industrial and Applied Mathematics (2011)
Google Scholar
Bhattacharya, S., Yu, F.X., Chang, S.F.: Minimally needed evidence for complex event recognition in unconstrained videos. In: ICMR (2014)
Google Scholar
Cao, L., Mu, Y., Natsev, A., Chang, S.-F., Hua, G., Smith, J.R.: Scene aligned pooling for complex video recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 688–701. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Chen, Y., Bi, J., Wang, J.Z.: Miles: Multiple-instance learning via embedded instance selection. PAMI 28(12), 1931–1947 (2006)
CrossRef
Google Scholar
Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89(1), 31–71 (1997)
CrossRef
MATH
Google Scholar
Ikizler-Cinbis, N., Sclaroff, S.: Object, scene and actions: Combining multiple features for human action recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 494–507. Springer, Heidelberg (2010)
CrossRef
Google Scholar
INRIA: Yael library: Optimized implementations of computationally demanding functions (2009),
https://gforge.inria.fr/projects/yael/
Jiang, Y.G., Bhattacharya, S., Chang, S.F., Shah, M.: High-level event recognition in unconstrained videos. IJMIR, 1–29 (2012)
Google Scholar
Joachims, T.: Optimizing search engines using clickthrough data. In: SIGKDD, pp. 133–142. ACM (2002)
Google Scholar
Li, W., Yu, Q., Divakaran, A., Vasconcelos, N.: Dynamic pooling for complex event recognition. In: ICCV (2013)
Google Scholar
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)
CrossRef
Google Scholar
Natarajan, P., Wu, S., Vitaladevuni, S., Zhuang, X., Tsakalidis, S., Park, U., Prasad, R.: Multimodal feature fusion for robust event detection in web videos. In: CVPR (2012)
Google Scholar
Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with fisher vectors on a compact feature set. In: ICCV, pp. 1817–1824 (2013)
Google Scholar
Over, P., Awad, G., Michel, M., Fiscus, J., Sanders, G., Kraaij, W., Smeaton, A.F., Quenot, G.: Trecvid 2013 – an overview of the goals, tasks, data, evaluation mechanisms and metrics. In: Proceedings of TRECVID 2013. NIST (2013)
Google Scholar
Quattoni, A., Carreras, X., Collins, M., Darrell, T.: An efficient projection for l
1, ∞ , infinity regularization. In: ICML (2009)
Google Scholar
Rakotomamonjy, A.: Sparse support vector infinite push. In: ICML (2012)
Google Scholar
Rudin, C.: The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. JMLR 10, 2233–2271 (2009)
MATH
MathSciNet
Google Scholar
Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes from videos in the wild. CRCV-TR-12-01 (2012)
Google Scholar
Tamrakar, A., Ali, S., Yu, Q., Liu, J., Javed, O., Divakaran, A., Cheng, H., Sawhney, H.: Evaluation of low-level features and their combinations for complex event detection in open source videos. In: CVPR (2012)
Google Scholar
Tang, K., Fei-Fei, L., Koller, D.: Learning latent temporal structure for complex event detection. In: CVPR (2012)
Google Scholar
Vahdat, A., Cannons, K., Mori, G., Oh, S., Kim, I.: Compositional models for video event detection: A multiple kernel learning latent variable approach. In: ICCV, pp. 1185–1192 (2013)
Google Scholar
Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms (2008),
http://www.vlfeat.org/
Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: CVPR (2011)
Google Scholar
Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. IJCV, 1–20 (2013)
Google Scholar