Abstract
After hundreds of years of human settlement, each city has formed a distinct identity, distinguishing itself from other cities. In this work, we propose to characterize the identity of a city via an attribute analysis of 2 million geo-tagged images from 21 cities over 3 continents. First, we estimate the scene attributes of these images and use this representation to build a higher-level set of 7 city attributes, tailored to the form and function of cities. Then, we conduct the city identity recognition experiments on the geo-tagged images and identify images with salient city identity on each city attribute. Based on the misclassification rate of the city identity recognition, we analyze the visual similarity among different cities. Finally, we discuss the potential application of computer vision to urban planning.
Chapter PDF
Similar content being viewed by others
References
Branson, S., Wah, C., Schroff, F., Babenko, B., Welinder, P., Perona, P., Belongie, S.: Visual recognition with humans in the loop. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 438–451. Springer, Heidelberg (2010)
Chen, D.M., Baatz, G., Koser, K., Tsai, S.S., Vedantham, R., Pylvanainen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., et al.: City-scale landmark identification on mobile devices. In: Proc. CVPR (2011)
Crandall, D.J., Backstrom, L., Huttenlocher, D., Kleinberg, J.: Mapping the world’s photos. In: Proceedings of the 18th International Conference on World wide web (2009)
Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes paris look like paris? ACM Transactions on Graphics (TOG) (2012)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531 (2013)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. The Journal of Machine Learning Research (2008)
Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single image. In: Proc. CVPR (2008)
Khosla, A., An, B., Lim, J.J., Torralba, A.: Looking beyond the visible scene. In: Proc. CVPR (2014)
Kisilevich, S., Krstajic, M., Keim, D., Andrienko, N., Andrienko, G.: Event-based analysis of people’s activities and behavior using flickr and panoramio geotagged photo collections. In: 2010 14th International Conference on Information Visualisation, IV (2010)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)
Lee, Y.J., Efros, A.A., Hebert, M.: Style-aware mid-level representation for discovering visual connections in space and time. In: Proc. ICCV (2013)
Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.-M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)
Li, Y., Crandall, D.J., Huttenlocher, D.P.: Landmark classification in large-scale image collections. In: Proc. ICCV (2009)
Lin, T.Y., Belongie, S., Hays, J.: Cross-view image geolocalization. In: Proc. CVPR (2013)
Lynch, K.: The image of the city. MIT Press (1960)
Nasar, J.L.: The evaluative image of the city. Sage Publications Thousand Oaks, CA (1998)
Newman, M.E.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences (2006)
Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. Int’l Journal of Computer Vision (2001)
Parikh, D., Grauman, K.: Relative attributes. In: Proc. ICCV (2011)
Patterson, G., Hays, J.: Sun attribute database: Discovering, annotating, and recognizing scene attributes. In: Proc. CVPR (2012)
Preoţiuc-Pietro, D., Cranshaw, J., Yano, T.: Exploring venue-based city-to-city similarity measures. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (2013)
Proshansky, H.M., Fabian, A.K., Kaminoff, R.: Place-identity: Physical world socialization of the self. Journal of Environmental Psychology (1983)
Ripley, B.D.: Spatial statistics, vol. 575. John Wiley & Sons (2005)
Salesses, P., Schechtner, K., Hidalgo, C.A.: The collaborative image of the city: mapping the inequality of urban perception. PloS one (2013)
Seth, R., Covell, M., Ravichandran, D., Sivakumar, D., Baluja, S.: A tale of two (similar) cities: Inferring city similarity through geo-spatial query log analysis. In: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (2011)
Unit, E.I.: Best cities ranking and report. In: The Economist (2012)
Unit, E.I.: Global liveability ranking and report. In: The Economist (2013)
Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: Proc. CVPR (2010)
Zhang, H., Korayem, M., Crandall, D.J., LeBuhn, G.: Mining photo-sharing websites to study ecological phenomena. In: Proceedings of the 21st International Conference on World Wide Web (2012)
Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proc. CVPR (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhou, B., Liu, L., Oliva, A., Torralba, A. (2014). Recognizing City Identity via Attribute Analysis of Geo-tagged Images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8691. Springer, Cham. https://doi.org/10.1007/978-3-319-10578-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-10578-9_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10577-2
Online ISBN: 978-3-319-10578-9
eBook Packages: Computer ScienceComputer Science (R0)