Advertisement

Propositional SAT Solving

  • Joao Marques-Silva
  • Sharad Malik
Chapter

Abstract

The Boolean Satisfiability Problem (SAT) is well known in computational complexity, representing the first decision problem to be proved NP-complete. SAT is also often the subject of work in proof complexity. Besides its theoretical interest, SAT finds a wide range of practical applications. Moreover, SAT solvers have been the subject of remarkable efficiency improvements since the mid-1990s, motivating their widespread use in many practical applications including Bounded and Unbounded Model Checking. The success of SAT solvers has also motivated the development of algorithms for natural extensions of SAT, including Quantified Boolean Formulas (QBF), Pseudo-Boolean constraints (PB), Maximum Satisfiability (MaxSAT) and Satisfiability Modulo Theories (SMT) which also see application in the model-checking context. This chapter first covers the organization of modern conflict-driven clause learning (CDCL) SAT solvers, which are used in the vast majority of practical applications of SAT. It then reviews the techniques shown to be effective in modern SAT solvers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A new look at BDDs for pseudo-boolean constraints. J. Artif. Intell. Res. 45, 443–480 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Achá, R.J.A., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Practical algorithms for unsatisfiability proof and core generation in SAT solvers. AI Commun. 23(2–3), 145–157 (2010) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) AAAI Conf. on Artificial Intelligence (AAAI), pp. 15–20. AAAI Press, Palo Alto (2010) Google Scholar
  6. 6.
    Audemard, G., Simon, L.: Experimenting with small changes in conflict-driven clause learning algorithms. In: Stuckey, P.J. (ed.) Intl. Conf. on Principles and Practice of Constraint Programming (CP). LNCS, vol. 5202, pp. 630–634. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.) Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 399–404. IJCAI/AAAI Press, Melbourne/Palo Alto (2009) Google Scholar
  8. 8.
    Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean constraints into CNF. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg (2009) zbMATHGoogle Scholar
  9. 9.
    Baker, A.B.: The hazards of fancy backtracking. In: Hayes-Roth, B., Korf, R.E. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 288–293. AAAI Press/MIT Press, Palo Alto/Cambridge (1994) Google Scholar
  10. 10.
    Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing and solving over-determined constraint satisfaction problems. In: Bajcsy, R. (ed.) Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 276–281. Morgan Kaufmann, Cambridge (1993) Google Scholar
  11. 11.
    Baptista, L., Marques-Silva, J.: Using randomization and learning to solve hard real-world instances of satisfiability. In: Dechter [30], pp. 489–494 zbMATHCrossRefGoogle Scholar
  12. 12.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009) Google Scholar
  13. 13.
    Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint Computer Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314. Thomson Book Co., Washington D.C. (1968) Google Scholar
  14. 14.
    Bayardo, R.J. Jr., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: Kuipers, B., Webber, B.L. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 203–208. AAAI Press/MIT Press, Palo Alto/Cambridge (1997) Google Scholar
  15. 15.
    Belov, A., Chen, H., Mishchenko, A., Marques-Silva, J.: Core minimization in SAT-based abstraction. In: Macii, E. (ed.) Design, Automation & Test in Europe (DATE), pp. 1411–1416. EDA Consortium/ACM, San Jose/New York (2013) Google Scholar
  16. 16.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ben-Eliyahu, R., Dechter, R.: On computing minimal models. Ann. Math. Artif. Intell. 18(1), 3–27 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ben-Eliyahu-Zohary, R., Palopoli, L.: Reasoning with minimal models: efficient algorithms and applications. Artif. Intell. 96(2), 421–449 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Biere, A.: PicoSAT essentials. J. Satisf. Boolean Model. Comput. 4(2–4), 75–97 (2008) zbMATHGoogle Scholar
  20. 20.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, R. (ed.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999) Google Scholar
  21. 21.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009) zbMATHGoogle Scholar
  22. 22.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D.A. (eds.) Intl. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  23. 23.
    Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Form. Asp. Comput. 20(4–5), 379–405 (2008) zbMATHCrossRefGoogle Scholar
  24. 24.
    Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(1), 52–59 (2004) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Trans. Comput. 35(8), 677–691 (1986) zbMATHCrossRefGoogle Scholar
  26. 26.
    Büning, H.K., Bubeck, U.: Theory of quantified boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press, Amsterdam (2009) Google Scholar
  27. 27.
    Büning, H.K., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press, Amsterdam (2009) Google Scholar
  28. 28.
    Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. INFORMS J. Comput. 3(2), 157–168 (1991) zbMATHCrossRefGoogle Scholar
  29. 29.
    Coelho, H., Studer, R., Wooldridge, M. (eds.): Proceedings of the ECAI 2010—19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16–20, 2010. IOS Press, Amsterdam (2010) zbMATHGoogle Scholar
  30. 30.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A., Banerji, R.B., Ullman, J.D. (eds.) Annual Symp. on Theory of Computing (STOC), pp. 151–158. ACM, New York (1971) Google Scholar
  31. 31.
    Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in satisfiability problems. In: Fikes, R., Lehnert, W.G. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 21–27. AAAI Press/MIT Press, Palo Alto/Cambridge (1993) Google Scholar
  32. 32.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960) MathSciNetzbMATHGoogle Scholar
  34. 34.
    Dechter, R. (ed.): Principles and Practice of Constraint Programming—CP 2000, Proceedings of the 6th International Conference, Singapore, September 18–21, 2000. LNCS, vol. 1894. Springer, Heidelberg (2000) zbMATHGoogle Scholar
  35. 35.
    Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006) Google Scholar
  36. 36.
    Dubois, O., André, P., Boufkhad, Y., Carlier, J.: SAT versus UNSAT. In: Johnson, D.S., Trick, M. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 415–436. AMS, Providence (1996) CrossRefGoogle Scholar
  37. 37.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005) zbMATHCrossRefGoogle Scholar
  38. 38.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2003) zbMATHCrossRefGoogle Scholar
  39. 39.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006) zbMATHGoogle Scholar
  40. 40.
    Freeman, J.W.: Improvements to propositional satisfiability search algorithms. Ph.D. thesis, University of Pennsylvania (1995) Google Scholar
  41. 41.
    Frisch, A.M., Peugniez, T.J.: Solving non-boolean satisfiability problems with stochastic local search. In: Nebel, B. (ed.) Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 282–290. Morgan Kaufmann, Cambridge (2001) Google Scholar
  42. 42.
    Fujiwara, H., Shimono, T.: On the acceleration of test generation algorithms. Trans. Comput. 32(12), 1137–1144 (1983) CrossRefGoogle Scholar
  43. 43.
    Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009) Google Scholar
  44. 44.
    Goldberg, E.I., Novikov, Y.: BerkMin: a fast and robust Sat-solver. In: Design, Automation & Test in Europe (DATE), pp. 142–149. IEEE, Piscataway (2002) Google Scholar
  45. 45.
    Gomes, C.P., Selman, B., Kautz, H.A.: Boosting combinatorial search through randomization. In: Mostow, J., Rich, C. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 431–437. AAAI Press/MIT Press, Palo Alto/Cambridge (1998) Google Scholar
  46. 46.
    Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of boolean clauses. In: Intl. Conf. on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 74–83. IEEE, Piscataway (2008) Google Scholar
  47. 47.
    Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in parallel SAT solving. In: Cohen, D. (ed.) Intl. Conf. on Principles and Practice of Constraint Programming (CP). LNCS, vol. 6308, pp. 252–265. Springer, Heidelberg (2010) Google Scholar
  48. 48.
    Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. J. Satisf. Boolean Model. Comput. 6(4), 245–262 (2009) zbMATHGoogle Scholar
  49. 49.
    Hamadi, Y., Wintersteiger, C.M.: Seven challenges in parallel SAT solving. AI Mag. 34(2), 99–106 (2013) CrossRefGoogle Scholar
  50. 50.
    Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: Extracting MUCs from constraint networks. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) European Conf. on Artificial Intelligence (ECAI), pp. 113–117. IOS Press, Amsterdam (2006) Google Scholar
  51. 51.
    Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSAT: an efficient weighted Max-SAT solver. J. Artif. Intell. Res. 31, 1–32 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Huang, J.: The effect of restarts on the efficiency of clause learning. In: Veloso, M.M. (ed.) Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 2318–2323 (2007) Google Scholar
  53. 53.
    Huang, J.: Extended clause learning. Artif. Intell. 174(15), 1277–1284 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: Intl. Symp. on Software Testing and Analysis (ISSTA), pp. 14–25. ACM, New York (2000) Google Scholar
  55. 55.
    Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning—Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday. Lecture Notes in Artificial Intelligence, vol. 6565, pp. 111–130. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  56. 56.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012) Google Scholar
  57. 57.
    Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom. Reason. 49(4), 583–619 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Intl. Joint Conf. on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  59. 59.
    Jin, H., Han, H., Somenzi, F.: Efficient conflict analysis for finding all satisfying assignments of a boolean circuit. In: Halbwachs, N., Zuck, L.D. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005) Google Scholar
  60. 60.
    Junker, U.: QuickXplain: preferred explanations and relaxations for over-constrained problems. In: McGuinness, D.L., Ferguson, G. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 167–172. AAAI Press/MIT Press, Palo Alto/Cambridge (2004) Google Scholar
  61. 61.
    Kautz, H.A., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) European Conf. on Artificial Intelligence (ECAI), pp. 359–363. Wiley, New York (1992) Google Scholar
  62. 62.
    Kleine-Büning, H., Letterman, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, Cambridge (1999) zbMATHGoogle Scholar
  63. 63.
    Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer, Heidelberg (2008) zbMATHGoogle Scholar
  64. 64.
    Kullmann, O. (ed.): Theory and Applications of Satisfiability Testing—SAT 2009, Proceedings of the 12th International Conference, SAT 2009, Swansea, UK, June 30–July 3, 2009. LNCS, vol. 5584. Springer, Heidelberg (2009) zbMATHGoogle Scholar
  65. 65.
    Laitinen, T., Junttila, T.A., Niemelä, I.: Extending clause learning DPLL with parity reasoning. In: Coelho et al. [61], pp. 21–26 Google Scholar
  66. 66.
    Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 613–631. IOS Press, Amsterdam (2009) Google Scholar
  67. 67.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Lynce, I., Baptista, L., Marques-Silva, J.: Towards provably complete stochastic search algorithms for satisfiability. In: Brazdil, P., Jorge, A. (eds.) Portuguese Conf. on Artificial Intelligence (EPIA). LNCS, vol. 2258, pp. 363–370. Springer, Heidelberg (2001) Google Scholar
  69. 69.
    Lynce, I., Marques-Silva, J.: Probing-based preprocessing techniques for propositional satisfiability. In: Intl. Conf. on Tools with Artificial Intelligence (ICTAI), pp. 105–110. IEEE, Piscataway (2003) Google Scholar
  70. 70.
    Lynce, I., Marques-Silva, J.: Efficient data structures for backtrack search SAT solvers. Ann. Math. Artif. Intell. 43(1), 137–152 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Manquinho, V.M., Marques-Silva, J.: Satisfiability-based algorithms for boolean optimization. Ann. Math. Artif. Intell. 40(3–4), 353–372 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Marques-Silva, J.: Search algorithms for satisfiability problems in combinational switching circuits. Ph.D. thesis, University of Michigan (1995) Google Scholar
  73. 73.
    Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) Portuguese Conf. on Artificial Intelligence (EPIA). LNCS, vol. 1695, pp. 62–74. Springer, Heidelberg (1999) Google Scholar
  74. 74.
    Marques-Silva, J.: Algebraic simplification techniques for propositional satisfiability. In: Dechter [107], pp. 537–542 CrossRefGoogle Scholar
  75. 75.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Rossi, F. (ed.) Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 615–622. IJCAI/AAAI, Melbourne/Palo Alto (2013) Google Scholar
  76. 76.
    Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates in boolean formulae. In: Sharygina, N., Veith, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 8044, pp. 592–607. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  77. 77.
    Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional theories. In: Coelho et al. [54], pp. 15–20 Google Scholar
  78. 78.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153. IOS Press, Amsterdam (2009) Google Scholar
  79. 79.
    Marques-Silva, J., Sakallah, K.A.: Dynamic search-space pruning techniques in path sensitization. In: Lorenzetti, M.J. (ed.) Design Automation Conf. (DAC), pp. 705–711. ACM, New York (1994) CrossRefGoogle Scholar
  80. 80.
    Marques-Silva, J., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Intl. Conf. on Computer-Aided Design (ICCAD), pp. 220–227. IEEE/ACM, Piscataway/New York (1996) Google Scholar
  81. 81.
    Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. Trans. Comput. 48(5), 506–521 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Marques-Silva, J., Sakallah, K.A. (eds.): Theory and Applications of Satisfiability Testing—SAT 2007, Proceedings of the 10th International Conference, Lisbon, Portugal, May 28–31, 2007. LNCS, vol. 4501. Springer, Heidelberg (2007) zbMATHGoogle Scholar
  83. 83.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  84. 84.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A. Jr., Somenzi, F. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  85. 85.
    Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Design Automation Conf. (DAC), pp. 530–535. ACM, New York (2001) Google Scholar
  87. 87.
    Nam, G.J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based detailed FPGA routing. In: Intl. Conf. on VLSI Design, pp. 574–577. IEEE, Piscataway (1999) Google Scholar
  88. 88.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(\(T\)). J. ACM 53(6), 937–977 (2006) MathSciNetzbMATHGoogle Scholar
  89. 89.
    Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva and Sakallah [33], pp. 294–299 Google Scholar
  90. 90.
    Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Prestwich, S.D.: Variable dependency in local search: prevention is better than cure. In: Marques-Silva and Sakallah [32], pp. 107–120 Google Scholar
  92. 92.
    Prestwich, S.D.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 75–97. IOS Press, Amsterdam (2009) Google Scholar
  93. 93.
    Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In: Jensen, K., Podelski, A. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004) Google Scholar
  94. 94.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965) MathSciNetzbMATHGoogle Scholar
  95. 95.
    Roussel, O., Manquinho, V.M.: Pseudo-boolean and cardinality constraints. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 695–733. IOS Press, Amsterdam (2009) Google Scholar
  96. 96.
    Sabharwal, A., Samulowitz, H., Sellmann, M.: Learning back-clauses in SAT. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 7317, pp. 498–499. Springer, Heidelberg (2012) Google Scholar
  97. 97.
    Schulz, M.H., Trischler, E., Sarfert, T.M.: SOCRATES: a highly efficient automatic test pattern generation system. Trans. Comput.-Aided Des. Integr. Circuits Syst. 7(1), 126–137 (1988) CrossRefGoogle Scholar
  98. 98.
    Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Johnson, D.S., Trick, M. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 521–532. AMS, Providence (1996) zbMATHCrossRefGoogle Scholar
  99. 99.
    Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Hunt, W.A. Jr., Johnson, S.D. (eds.) Formal Methods in Computer Aided Design (FMCAD). LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000) Google Scholar
  100. 100.
    Sheeran, M., Stålmarck, G.: A tutorial on Stålmarck’s proof procedure for propositional logic. Form. Methods Syst. Des. 16(1), 23–58 (2000) CrossRefGoogle Scholar
  101. 101.
    Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Intl. Conf. on Automated Software Engineering (ASE), pp. 94–105. IEEE, Piscataway (2003) Google Scholar
  102. 102.
    Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) Intl. Conf. on Principles and Practice of Constraint Programming (CP). LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005) Google Scholar
  103. 103.
    Sinz, C., Iser, M.: Problem-sensitive restart heuristics for the DPLL procedure. In: Kullmann [98], pp. 356–362 Google Scholar
  104. 104.
    de Siqueira, J.L.N., Puget, J.F.: Explanation-based generalisation of failures. In: Kodratoff, Y. (ed.) European Conf. on Artificial Intelligence (ECAI), pp. 339–344. Pitman, London (1988) Google Scholar
  105. 105.
    Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann [25], pp. 237–243 Google Scholar
  106. 106.
    Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artif. Intell. 9(2), 135–196 (1977) zbMATHCrossRefGoogle Scholar
  107. 107.
    Stephan, P.R., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Combinational test generation using satisfiability. Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(9), 1167–1176 (1996) CrossRefGoogle Scholar
  108. 108.
    Stuckey, P.J.: There are no CNF problems. In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 7962, pp. 19–21. Springer, Heidelberg (2013) Google Scholar
  109. 109.
    Tarjan, R.E.: Finding dominators in directed graphs. SIAM J. Comput. 3(1), 62–89 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Silenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, pp. 115–125. Springer, Heidelberg (1968) Google Scholar
  111. 111.
    Urquhart, A.: The complexity of propositional proofs. Bull. Symb. Log. 1(4), 425–467 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Van Gelder, A., Tsuji, Y.K.: Satisfiability testing with more reasoning and less guessing. Tech. rep., University of California at Santa Cruz (1995) Google Scholar
  113. 113.
    Warners, J.P.: A linear-time transformation of linear inequalities into conjunctive normal form. Inf. Process. Lett. 68(2), 63–69 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Wieringa, S.: Understanding, improving and parallelizing MUS finding using model rotation. In: Milano, M. (ed.) Intl. Conf. on Principles and Practice of Constraint Programming (CP). LNCS, vol. 7514, pp. 672–687. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  115. 115.
    Wolfram, D.A.: Forward checking and intelligent backtracking. Inf. Process. Lett. 32(2), 85–87 (1989) MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008) zbMATHCrossRefGoogle Scholar
  117. 117.
    Zabih, R., McAllester, D.A.: A rearrangement search strategy for determining propositional satisfiability. In: Shrobe, H.E., Mitchell, T.M., Smith, R.G. (eds.) National Conference on Artificial Intelligence (AAAI), pp. 155–160. AAAI Press/MIT Press, Palo Alto/Cambridge (1988) Google Scholar
  118. 118.
    Zhang, H.: SATO: an efficient propositional prover. In: McCune, W. (ed.) Intl. Conf. on Automated Deduction (CADE). LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997) Google Scholar
  119. 119.
    Zhang, H., Stickel, M.E.: Implementing the Davis-Putnam method. J. Autom. Reason. 24(1/2), 277–296 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications. In: Design, Automation & Test in Europe (DATE), pp. 10,880–10,885. IEEE, Piscataway (2003) Google Scholar
  121. 121.
    Zhu, C.S., Weissenbacher, G., Sethi, D., Malik, S.: SAT-based techniques for determining backbones for post-silicon fault localisation. In: Zilic, Z., Shukla, S.K. (eds.) Intl. High Level Design Validation and Test Workshop (HLDVT), pp. 84–91. IEEE, Piscataway (2011) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of LisbonLisbonPortugal
  2. 2.Princeton UniversityPrincetonUSA

Personalised recommendations