Skip to main content

Automata Theory and Model Checking

  • Chapter
  • First Online:
Handbook of Model Checking

Abstract

We study automata on infinite words and their applications in system specification and verification. We first introduce Büchi automata and survey their closure properties, expressive power, and determinization. We then introduce additional acceptance conditions and the model of alternating automata. We compare the different classes of automata in terms of expressive power and succinctness, and describe decision problems for them. Finally, we describe the automata-theoretic approach to system specification and verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: Proc. 38th IEEE Symp. on Foundations of Computer Science, pp. 100–109 (1997)

    Google Scholar 

  2. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic: a new temporal property-specification logic. In: Proc. 8th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems. LNCS, vol. 2280, pp. 196–211. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Boker, U., Kupferman, O., Rosenberg, A.: Alternation removal in Büchi automata. In: Proc. 37th Int. Colloq. on Automata, Languages, and Programming, vol. 6199, pp. 76–87 (2010)

    Chapter  Google Scholar 

  4. Boker, U., Kupferman, O., Steinitz, A.: Parityzing Rabin and Streett. In: Proc. 30th Conf. on Foundations of Software Technology and Theoretical Computer Science, pp. 412–423 (2010)

    MATH  Google Scholar 

  5. Breuers, S., Löding, C., Olschewski, J.: Improved Ramsey-based Büchi complementation. In: Proc. 15th Int. Conf. on Foundations of Software Science and Computation Structures. LNCS, vol. 7213, pp. 150–164. Springer, Heidelberg (2012)

    Google Scholar 

  6. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Proc. Int. Congress on Logic, Method, and Philosophy of Science. 1960, pp. 1–12. Stanford University Press, Stanford (1962)

    Google Scholar 

  7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. Assoc. Comput. Mach. 28(1), 114–133 (1981)

    Article  MathSciNet  Google Scholar 

  8. Choueka, Y.: Theories of automata on \(\omega\)-tapes: a simplified approach. J. Comput. Syst. Sci. 8, 117–141 (1974)

    Article  MathSciNet  Google Scholar 

  9. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model checker. Int. J. Softw. Tools Technol. Transf. 2(4), 410–425 (2000)

    Article  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press/McGraw-Hill, Cambridge/New York (1990)

    MATH  Google Scholar 

  11. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: World Congress on Formal Methods. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  12. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 328–337 (1988)

    Google Scholar 

  13. Emerson, E.A., Jutla, C.: Tree automata, \(\mu\)-calculus and determinacy. In: Proc. 32nd IEEE Symp. on Foundations of Computer Science, pp. 368–377 (1991)

    Google Scholar 

  14. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic strikes back. In: Proc. 12th ACM Symp. on Principles of Programming Languages, pp. 84–96 (1985)

    Google Scholar 

  15. Emerson, E.A., Lei, C.-L.: Temporal model checking under generalized fairness constraints. In: Proc. 18th Hawaii Int. Conf. on System Sciences. Western Periodicals Company, North Hollywood (1985)

    Google Scholar 

  16. Emerson, E.A., Lei, C.-L.: Modalities for model checking: branching time logic strikes back. Sci. Comput. Program. 8, 275–306 (1987)

    Article  MathSciNet  Google Scholar 

  17. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Unifying Büchi complementation constructions. In: Proc. 20th Annual Conf. of the European Association for Computer Science Logic, pp. 248–263 (2011)

    Google Scholar 

  18. Friedgut, E., Kupferman, O., Vardi, M.Y.: Büchi complementation made tighter. Int. J. Found. Comput. Sci. 17(4), 851–868 (2006)

    Article  Google Scholar 

  19. Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata. In: Proc. 8th Int. Conf. on Implementation and Application of Automata. LNCS, vol. 2759, pp. 35–48. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Proc. 13th Int. Conf. on Computer Aided Verification. LNCS, vol. 2102, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembiski, P., Sredniawa, M. (eds.) Protocol Specification, Testing, and Verification, pp. 3–18. Chapman & Hall, London (1995)

    Google Scholar 

  22. Giannakopoulou, D., Lerda, F.: From states to transitions: improving translation of LTL formulae to Büchi automata. In: Proc. 22nd International Conference on Formal Techniques for Networked and Distributed Systems. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

    Google Scholar 

  23. Godefroid, P., Wolper, P.: A partial approach to model checking. Inf. Comput. 110(2), 305–326 (1994)

    Article  MathSciNet  Google Scholar 

  24. Hardin, R.H., Har’el, Z., Kurshan, R.P.: COSPAN. In: Proc. 8th Int. Conf. on Computer Aided Verification. LNCS, vol. 1102, pp. 423–427. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  25. Henzinger, M., Telle, J.A.: Faster algorithms for the nonemptiness of Streett automata and for communication protocol pruning. In: Proc. 5th Scandinavian Workshop on Algorithm Theory. LNCS, vol. 1097, pp. 10–20. Springer, Heidelberg (1996)

    Google Scholar 

  26. Henzinger, T.A., Kupferman, O., Vardi, M.Y.: A space-efficient on-the-fly algorithm for real-time model checking. In: Proc. 7th Int. Conf. on Concurrency Theory. LNCS, vol. 1119, pp. 514–529. Springer, Heidelberg (1996)

    Google Scholar 

  27. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)

    Article  Google Scholar 

  28. Immerman, N.: Nondeterministic space is closed under complement. Inf. Comput. 17, 935–938 (1988)

    MATH  Google Scholar 

  29. Jurdzinski, M.: Small progress measures for solving parity games. In: Proc. 17th Symp. on Theoretical Aspects of Computer Science. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)

    Google Scholar 

  30. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Proc. 35th Int. Colloq. on Automata, Languages, and Programming. LNCS, vol. 5126, pp. 724–735. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Katz, S., Peled, D.: Interleaving set temporal logic. Theor. Comput. Sci. 75(3), 263–287 (1990)

    Article  MathSciNet  Google Scholar 

  32. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata. In: Proc. 4th Int. Conf. on Foundations of Software Science and Computation Structures. LNCS, vol. 2030, pp. 276–286. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Klarlund, N.: Progress measures for complementation of \(\omega\)-automata with applications to temporal logic. In: Proc. 32nd IEEE Symp. on Foundations of Computer Science, pp. 358–367 (1991)

    Google Scholar 

  34. Kretínský, J., Esparza, J.: Deterministic automata for the (F, G)-fragment of LTL. In: Proc. 24th Int. Conf. on Computer Aided Verification. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  35. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic \(\omega\)-automata vis-a-vis deterministic Büchi automata. In: Algorithms and Computations. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  36. Kupferman, O.: Avoiding determinization. In: Proc. 21st IEEE Symp. on Logic in Computer Science, pp. 243–254 (2006)

    Google Scholar 

  37. Kupferman, O.: Sanity checks in formal verification. In: Proc. 17th Int. Conf. on Concurrency Theory. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006)

    Google Scholar 

  38. Kupferman, O., Morgenstern, G., Murano, A.: Typeness for \(\omega\)-regular automata. Int. J. Found. Comput. Sci. 17(4), 869–884 (2006)

    Article  MathSciNet  Google Scholar 

  39. Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In: Proc. 12th Int. Conf. on Concurrency Theory. LNCS, vol. 2154, pp. 519–535 (2001)

    Google Scholar 

  40. Kupferman, O., Piterman, N., Vardi, M.Y.: Model checking linear properties of prefix-recognizable systems. In: Proc. 14th Int. Conf. on Computer Aided Verification. LNCS, vol. 2404, pp. 371–385. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  41. Kupferman, O., Vardi, M.Y.: On the complexity of branching modular model checking. In: Proc. 6th Int. Conf. on Concurrency Theory. LNCS, vol. 962, pp. 408–422. Springer, Heidelberg (1995)

    Google Scholar 

  42. Kupferman, O., Vardi, M.Y.: Verification of fair transition systems. In: Proc. 8th Int. Conf. on Computer Aided Verification. LNCS, vol. 1102, pp. 372–382. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  43. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Proc. 12th Int. Conf. on Computer Aided Verification. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  44. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM Trans. Comput. Log. 2(2), 408–429 (2001)

    Article  MathSciNet  Google Scholar 

  45. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. 46th IEEE Symp. on Foundations of Computer Science, pp. 531–540 (2005)

    Google Scholar 

  46. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)

    Article  MathSciNet  Google Scholar 

  47. Kurshan, R.P.: Complementing deterministic Büchi automata in polynomial time. J. Comput. Syst. Sci. 35, 59–71 (1987)

    Article  Google Scholar 

  48. Kurshan, R.P.: Computer Aided Verification of Coordinating Processes. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  49. Landweber, L.H.: Decision problems for \(\omega\)-automata. Math. Syst. Theory 3, 376–384 (1969)

    Article  MathSciNet  Google Scholar 

  50. Löding, C.: Optimal bounds for the transformation of omega-automata. In: Proc. 19th Conf. on Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 1738, pp. 97–109 (1999)

    Chapter  Google Scholar 

  51. Maler, O., Staiger, L.: On syntactic congruences for \(\omega\)-languages. Theor. Comput. Sci. 183(1), 93–112 (1997)

    Article  MathSciNet  Google Scholar 

  52. McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control 9, 521–530 (1966)

    Article  MathSciNet  Google Scholar 

  53. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proc. 13th IEEE Symp. on Switching and Automata Theory, pp. 125–129 (1972)

    Google Scholar 

  54. Michel, M.: Complementation is More Difficult with Automata on Infinite Words. CNET, Paris (1988)

    Google Scholar 

  55. Miyano, S., Hayashi, T.: Alternating finite automata on \(\omega\)-words. Theor. Comput. Sci. 32, 321–330 (1984)

    Article  MathSciNet  Google Scholar 

  56. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic theory of the tree and its complexity. In: Proc. 13th Int. Colloq. on Automata, Languages, and Programming. LNCS, vol. 226, pp. 275–283. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  57. Muller, D.E., Schupp, P.E.: Alternating automata on infinite trees. In: Automata on Infinite Words. LNCS, vol. 192, pp. 100–107. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  58. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: new results and new proofs of theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci. 141, 69–107 (1995)

    Article  MathSciNet  Google Scholar 

  59. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Log. Methods Comput. Sci. 3(3), 5 (2007)

    Article  Google Scholar 

  60. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: 25 Years of Model Checking. LNCS, vol. 5000, pp. 172–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  61. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  62. Rabin, M.O.: Decidable theories. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 595–629. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  63. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 115–125 (1959)

    Article  MathSciNet  Google Scholar 

  64. Safra, S.: On the complexity of \(\omega\)-automata. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 319–327 (1988)

    Google Scholar 

  65. Safra, S., Vardi, M.Y.: On \(\omega\)-automata and temporal logic. In: Proc. 21st ACM Symp. on Theory of Computing, pp. 127–137 (1989)

    Google Scholar 

  66. Schewe, S.: Büchi complementation made tight. In: Proc. 26th Symp. on Theoretical Aspects of Computer Science. LIPIcs, vol. 3, pp. 661–672. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Wadern (2009)

    Google Scholar 

  67. Schewe, S.: Tighter bounds for the determinisation of Büchi automata. In: Proc. 12th Int. Conf. on Foundations of Software Science and Computation Structures. LNCS, vol. 5504, pp. 167–181. Springer, Heidelberg (2009)

    Google Scholar 

  68. Schewe, S.: Beyond hyper-minimisation—minimising DBAs and DPAs is NP-complete. In: Proc. 30th Conf. on Foundations of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 400–411 (2010)

    Google Scholar 

  69. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logic. J. ACM 32, 733–749 (1985)

    Article  MathSciNet  Google Scholar 

  70. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with applications to temporal logic. Theor. Comput. Sci. 49, 217–237 (1987)

    Article  Google Scholar 

  71. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Proc. 12th Int. Conf. on Computer Aided Verification. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  72. Synopsys: Assertion-based verification (2003)

    Google Scholar 

  73. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MathSciNet  Google Scholar 

  74. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, pp. 133–191 (1990)

    Google Scholar 

  75. Valmari, A.: A stubborn attack on state explosion. Form. Methods Syst. Des. 1, 297–322 (1992)

    Article  Google Scholar 

  76. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 182–221 (1986)

    Article  MathSciNet  Google Scholar 

  77. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)

    Article  MathSciNet  Google Scholar 

  78. Willems, B., Wolper, P.: Partial-order methods for model checking: from linear time to branching time. In: Proc. 11th IEEE Symp. on Logic in Computer Science, pp. 294–303 (1996)

    Chapter  Google Scholar 

  79. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths. In: Proc. 24th IEEE Symp. on Foundations of Computer Science, pp. 185–194 (1983)

    Google Scholar 

  80. Yan, Q.: Lower bounds for complementation of \(\omega\)-automata via the full automata technique. In: Proc. 33rd Int. Colloq. on Automata, Languages, and Programming. LNCS, vol. 4052, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  81. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orna Kupferman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kupferman, O. (2018). Automata Theory and Model Checking. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking. Springer, Cham. https://doi.org/10.1007/978-3-319-10575-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10575-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10574-1

  • Online ISBN: 978-3-319-10575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics