Advertisement

Symbolic Model Checking in Non-Boolean Domains

  • Rupak Majumdar
  • Jean-François Raskin
Chapter

Abstract

We consider symbolic model checking as a general procedure to compute fixed points on general lattices. We show that this view provides a unified approach for formal reasoning about systems that is applicable to many different classes of systems and properties. Our unified view is based on the notion of region algebras together with appropriate generalizations of the modal \(\mu\)-calculus. We show applications of our general approach to problems in infinite-state verification, reactive synthesis, and the analysis of probabilistic systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-state systems. In: Symp. on Logic in Computer Science (LICS), pp. 313–321. IEEE, Piscataway (1996) Google Scholar
  2. 2.
    de Alfaro, L.: Quantitative verification and control via the mu-calculus. In: Amadio, R., Lugiez, D. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 2761, pp. 102–126. Springer, Heidelberg (2003) Google Scholar
  3. 3.
    de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 2761, pp. 142–156. Springer, Heidelberg (2003) Google Scholar
  4. 4.
    de Alfaro, L., Faella, M., Henzinger, T., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005) MathSciNetCrossRefGoogle Scholar
  5. 5.
    de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: Symp. on Logic in Computer Science (LICS), pp. 141–154. IEEE, Piscataway (2000) Google Scholar
  6. 6.
    de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. In: Annual Symp. on Foundations of Computer Science (FOCS), pp. 564–575. IEEE, Piscataway (1998) Google Scholar
  7. 7.
    de Alfaro, L., Henzinger, T., Majumdar, R.: From verification to control: dynamic programs for omega-regular objectives. In: Symp. on Logic in Computer Science (LICS), pp. 279–290. IEEE, Piscataway (2001) Google Scholar
  8. 8.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 2154, pp. 536–550 (2001) Google Scholar
  9. 9.
    de Alfaro, L., Majumdar, R.: Quantitative solution of omega-regular games. J. Comput. Syst. Sci. 68(2), 374–397 (2004) MathSciNetCrossRefGoogle Scholar
  10. 10.
    de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game refinement relations and metrics. Log. Methods Comput. Sci. 4(3) (2008) Google Scholar
  11. 11.
    Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Alur, R., Henzinger, T., Kupferman, O., Vardi, M.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  13. 13.
    Asarin, E., Maler, O., Pnueli, A.: Symbolic controller synthesis for discrete and timed systems. In: Antsaklis, P., Nerode, A., Kohn, W., Sastry, S. (eds.) Hybrid Systems (II). LNCS, vol. 999, pp. 1–20. Springer, Heidelberg (1995) zbMATHGoogle Scholar
  14. 14.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to practice. Int. J. Softw. Tools Technol. Transf. 10(5), 401–424 (2008) CrossRefGoogle Scholar
  16. 16.
    Basu, S.: New results on quantifier elimination over real closed fields and applications to constraint databases. J. ACM 46(4), 537–555 (1999) MathSciNetCrossRefGoogle Scholar
  17. 17.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: UPPAAL-Tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Bhat, G., Cleaveland, R.: Efficient local model-checking for fragments of the modal \(\mu\)-calculus. In: Margaria, T., Steffen, B. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 1055, pp. 107–126. Springer, Heidelberg (1996) Google Scholar
  19. 19.
    Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  20. 20.
    Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bodík, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodarmor, C.: Programming with angelic nondeterminism. In: Hermenegildo, M.V., Palsberg, J. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 339–352. ACM, New York (2010) zbMATHGoogle Scholar
  22. 22.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  23. 23.
    Boigelot, B.: Domain-specific regular acceleration. Int. J. Softw. Tools Technol. Transf. 14(2), 193–206 (2012) CrossRefGoogle Scholar
  24. 24.
    Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for deciding linear arithmetic with integer and real variables. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Intl. Joint Conf. on Automated Reasoning (IJCAR). LNCS, vol. 2083. Springer, Heidelberg (2001) zbMATHGoogle Scholar
  25. 25.
    Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar, B. (eds.) Implementation and Applications of Automata (CIAA). LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  26. 26.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1855. Springer, Heidelberg (2000) Google Scholar
  27. 27.
    Bouajjani, A., Touili, T.: Extrapolating tree transformations. In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404. Springer, Heidelberg (2002) Google Scholar
  28. 28.
    Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003) Google Scholar
  29. 29.
    Bradfield, J.: The modal \(\mu\)-calculus alternation hierarchy is strict. Theor. Comput. Sci. 195(2), 133–153 (1998) MathSciNetCrossRefGoogle Scholar
  30. 30.
    van Breugel, F., Worrel, J.: Towards quantitative verification of probabilistic systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Intl. Colloquium on Automata, Languages and Programming. LNCS, vol. 2076, pp. 421–432. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  31. 31.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. Trans. Comput. C-35(8), 677–691 (1986) CrossRefGoogle Scholar
  32. 32.
    Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite systems using Presburger arithmetic. In: Grumberg, O. (ed.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  33. 33.
    Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking: \(10^{20}\) states and beyond. Inf. Comput. 98(2), 142–170 (1992) CrossRefGoogle Scholar
  34. 34.
    Bustan, D., Kupferman, O., Vardi, M.: A measured collapse of the modal \(\mu\)-calculus. In: Diekert, V., Habib, M. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 2996, pp. 522–533. Springer, Heidelberg (2004) zbMATHGoogle Scholar
  35. 35.
    Cassez, F., David, A., Fleury, E., Larsen, K., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005) Google Scholar
  36. 36.
    Chandra, S., Torlak, E., Barman, S., Bodík, R.: Angelic debugging. In: Taylor, R.N., Gall, H.C., Medvidovic, N. (eds.) Intl. Conf. on Software Engineering (ICSE), pp. 121–130. ACM, New York (2011) Google Scholar
  37. 37.
    Chatterjee, K., de Alfaro, L., Henzinger, T.: The complexity of quantitative concurrent parity games. In: Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 678–687. ACM, New York (2006) Google Scholar
  38. 38.
    Chatterjee, K., de Alfaro, L., Henzinger, T.: Qualitative concurrent parity games. Trans. Comput. Log. 12(4), 28 (2011) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Chatterjee, K., Doyen, L., Henzinger, T.: Quantitative languages. Trans. Comput. Log. 11(4), 23:1–23:38 (2010) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Chatterjee, K., Henzinger, T.: Value iteration. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  41. 41.
    Chatterjee, K., Henzinger, T.: A survey of stochastic \(\omega\)-regular games. J. Comput. Syst. Sci. 78(2), 394–413 (2012) MathSciNetCrossRefGoogle Scholar
  42. 42.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Graham, R.M., Harrison, M.A., Sethi, R. (eds.) Symp. on Principles of Programming Languages (POPL). ACM, New York (1977) zbMATHGoogle Scholar
  43. 43.
    Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) Programming Language Implementation and Logic Programming (PLILP). LNCS, vol. 631. Springer, Heidelberg (1992) zbMATHGoogle Scholar
  44. 44.
    Dam, M.: CTL and ECTL as fragments of the modal \(\mu\)-calculus. Theor. Comput. Sci. 126, 77–96 (1994) CrossRefGoogle Scholar
  45. 45.
    De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.F.: Antichains: a new algorithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  46. 46.
    De Wulf, M., Doyen, L., Maquet, N., Raskin, J.F.: Antichains: alternative algorithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008) zbMATHGoogle Scholar
  47. 47.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  48. 48.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Symp. on Logic in Computer Science (LICS), pp. 413–422. IEEE, Piscataway (2002) Google Scholar
  49. 49.
    Dickson, L.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Am. J. Math. 35, 413–422 (1913) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Dijkstra, E.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976) zbMATHGoogle Scholar
  51. 51.
    Doyen, L., Raskin, J.F.: Antichains for the automata-based approach to model-checking. Log. Methods Comput. Sci. 1, 5 (2009) MathSciNetzbMATHGoogle Scholar
  52. 52.
    Doyen, L., Raskin, J.F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010) Google Scholar
  53. 53.
    Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Annual Symp. on Foundations of Computer Science (FOCS), pp. 368–377. IEEE, Piscataway (1991) Google Scholar
  54. 54.
    Emerson, E., Lei, C.: Efficient model checking in fragments of the propositional \(\mu\)-calculus. In: Symp. on Logic in Computer Science (LICS), pp. 267–278. IEEE, Piscataway (1986) Google Scholar
  55. 55.
    Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic. Electron. Notes Theor. Comput. Sci. 220(3), 61–77 (2008) CrossRefGoogle Scholar
  56. 56.
    Filiot, E., Jin, N., Raskin, J.F.: An antichain algorithm for LTL realizability. In: Bouajjani, A., Maler, O. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  57. 57.
    Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011) CrossRefGoogle Scholar
  58. 58.
    Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere. Tech. Rep. LSV-98-4, Laboratoire Spécification et Vérification (1998) Google Scholar
  59. 59.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008) MathSciNetCrossRefGoogle Scholar
  60. 60.
    Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs. In: Hall, M.W., Padua, D.A. (eds.) Conf. on Programming Language Design and Implementation (PLDI), pp. 62–73. ACM, New York (2011) Google Scholar
  61. 61.
    Gurevich, Y., Harrington, L.: Trees, automata, and games. In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Annual Symp. on the Theory of Computing, pp. 60–65. ACM, New York (1982) Google Scholar
  62. 62.
    Henzinger, T., Ho, P.H., Wong-Toi, H.: HyTech: the next generation. In: Real-Time Systems Symposium (RTSS), pp. 56–65. IEEE, Piscataway (1995) Google Scholar
  63. 63.
    Henzinger, T., Horowitz, B., Majumdar, R.: Rectangular hybrid games. In: Baeten, J., Mauw, S. (eds.) Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1664, pp. 320–335. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  64. 64.
    Henzinger, T., Kupferman, O., Qadeer, S.: From prehistoric to postmodern symbolic model checking. In: Hu, A., Vardi, M. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1427, pp. 195–206. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  65. 65.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998) MathSciNetCrossRefGoogle Scholar
  66. 66.
    Henzinger, T.A., Majumdar, R., Raskin, J.F.: A classification of symbolic transition systems. Trans. Comput. Log. 6(1), 1–32 (2005) MathSciNetCrossRefGoogle Scholar
  67. 67.
    Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.A.: A tool for property synthesis. In: Damm, W., Hermanns, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  68. 68.
    Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults. J. Comput. Syst. Sci. 78(2), 441–460 (2012) MathSciNetCrossRefGoogle Scholar
  69. 69.
    Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1994) zbMATHGoogle Scholar
  70. 70.
    Könighofer, R., Bloem, R.: Automated error localization and correction for imperative programs. In: Bjesse, P., Slobodová, A. (eds.) Formal Methods in Computer Aided Design (FMCAD), pp. 91–100. FMCAD, Austin (2011) Google Scholar
  71. 71.
    Kozen, D.: Results on the propositional \(\mu\)-calculus. Theor. Comput. Sci. 27(3), 333–354 (1983) MathSciNetCrossRefGoogle Scholar
  72. 72.
    Kress-Gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control from abstraction and temporal logic specifications. Robot. Autom. Mag. 18(3), 65–74 (2011) CrossRefGoogle Scholar
  73. 73.
    Kristoffer, S., Frederiksen, S., Miltersen, P.: Approximating the value of a concurrent reachability game in the polynomial time hierarchy. In: Cai, L., Cheng, S.W., Lam, T. (eds.) Intl. Symposium on Algorithms and Computation (ISAAC). LNCS, vol. 8283, pp. 457–467. Springer, Heidelberg (2013) Google Scholar
  74. 74.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997) CrossRefGoogle Scholar
  75. 75.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995) zbMATHGoogle Scholar
  76. 76.
    Martin, D.: Borel determinacy. Ann. Math. 102, 363–371 (1975) MathSciNetCrossRefGoogle Scholar
  77. 77.
    Martin, D.: The determinacy of Blackwell games. J. Symb. Log. 63(4), 1565–1581 (1998) MathSciNetCrossRefGoogle Scholar
  78. 78.
    McMillan, K.: Symbolic Model Checking: An Approach to the State-Explosion Problem. Kluwer Academic, Norwell (1993) CrossRefGoogle Scholar
  79. 79.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989) zbMATHGoogle Scholar
  80. 80.
    Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–100 (2006) CrossRefGoogle Scholar
  81. 81.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947) zbMATHGoogle Scholar
  82. 82.
    Owen, G.: Game Theory. Academic Press, Cambridge (1995) zbMATHGoogle Scholar
  83. 83.
    Pnueli, A.: The temporal logic of programs. In: Annual Symp. on Foundations of Computer Science (FOCS), pp. 46–57. IEEE, Piscataway (1977) Google Scholar
  84. 84.
    Reisig, W.: Petri Nets: An Introduction. Springer, Heidelberg (1985) CrossRefGoogle Scholar
  85. 85.
    Solar-Lezama, A., Rabbah, R., Bodík, R., Ebcioglu, K.: Programming by sketching for bit-streaming programs. In: Sarkar, V., Hall, M.W. (eds.) Conf. on Programming Language Design and Implementation (PLDI), pp. 281–294. ACM, New York (2005) Google Scholar
  86. 86.
    Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S., Saraswat, V.: Combinatorial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Intl. Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 404–415. ACM, New York (2006) CrossRefGoogle Scholar
  87. 87.
    Srivastava, S., Gulwani, S., Foster, J.: From program verification to program synthesis. In: Hermenegildo, M.V., Palsberg, J. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 313–326. ACM, New York (2010) Google Scholar
  88. 88.
    Stockmeyer, L.: The complexity of decision problems in automata theory and logic. Ph.D. thesis, Massachusetts Institute of Technology (1974) Google Scholar
  89. 89.
    Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990) Google Scholar
  90. 90.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) Annual Symposium on Theoretical Aspects of Computer Science. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995) Google Scholar
  91. 91.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state systems. In: Annual Symp. on Foundations of Computer Science (FOCS), pp. 327–338. IEEE, Piscataway (1985) Google Scholar
  92. 92.
    Vardi, M., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994) MathSciNetCrossRefGoogle Scholar
  93. 93.
    Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic constraints (extended abstract). In: Mycroft, A. (ed.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 983. Springer, Heidelberg (1995) Google Scholar
  94. 94.
    Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: Decision and Control, pp. 4607–4612. IEEE, Piscataway (1997) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Software SystemsKaiserslauternGermany
  2. 2.Université libre de BruxellesBrusselsBelgium

Personalised recommendations