Abstract
Hybrid systems are models which combine discrete and continuous behavior. They occur frequently in safety-critical applications in various domains such as health care, transportation, and robotics, as a result of interactions between a digital controller and a physical environment. They also have relevance in other areas such as systems biology, in which the discrete dynamics arises as an abstraction of fast continuous processes. One of the prominent models is that of hybrid automata, where differential equations are associated with each node, and jump constraints such as guards and resets are associated with each edge.
In this chapter, we focus on the problem of model checking of hybrid automata against reachability and invariance properties, enabling the verification of general temporal logic specifications. We review the main decidability results for hybrid automata, and since model checking is in general undecidable, we present three complementary analysis approaches based on symbolic representations, abstraction, and logic. In particular, we illustrate polyhedron-based reachability analysis, finite quotients, abstraction refinement techniques, and logic-based verification. We survey important tools and application domains of successful hybrid system verification in this vibrant area of research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE (2012)
Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 59, 371–383 (2014)
Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Springer, Heidelberg (2011)
Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM, New York (2013)
Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 45–54. ACM, New York (2012)
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)
Alur, R.: Formal verification of hybrid systems. In: Chakraborty et al. [8, 34, 35, 91, 132], pp. 273–278
Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [31, 100, 113, 129, 149, 174–177], pp. 209–229
Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)
Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)
Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993)
Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Domenica Di Benedetto, M., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)
Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 7th International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)
Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur and Pappas [24, 46, 53, 62, 101, 114, 164, 168], pp. 32–47
Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007)
Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Proc. HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)
Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for refinement. In: Automated Technology for Verification and Analysis, pp. 37–51. Springer, Heidelberg (2010)
Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)
Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)
Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: Proc. of LICS, pp. 217–226. IEEE, Piscataway (2008)
Balluchi, A., Di Natale, F., Sangiovanni-Vincentelli, A.L., van Schuppen, J.H.: Synthesis for idle speed control of an automotive engine. In: Alur and Pappas [130, 182], pp. 80–94
Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Proc. of HSCC. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 10th International Conference, HSCC 2007, Pisa, Italy. LNCS, vol. 4416. Springer, Heidelberg (2007)
Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager and van Schuppen [104], pp. 31–45
Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching controllers for linear hybrid systems: safety control. Theor. Comput. Sci. 493, 116–138 (2013)
Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Comput. Sci. 335(2–3), 215–280 (2005)
Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)
Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–231 (2000)
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)
Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2–3), 291–345 (2004)
Branicky, M.S.: General hybrid dynamical systems: modeling, analysis, and control. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems, vol. 1066, pp. 186–200. Springer, Heidelberg (1995)
Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)
Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On reachability for hybrid automata over bounded time. In: Proceedings of ICALP 2011: International Colloquium on Automata, Languages and Programming (Part II). LNCS, vol. 6756, pp. 416–427. Springer, Heidelberg (2011)
Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear hybrid automata. In: Formal Methods in Computer-Aided Design, 2008. FMCAD’08, pp. 1–4. IEEE, Piscataway (2008)
Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. PhD thesis, University of Innsbruck (1965)
Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006)
Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152 (2000)
Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.): Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9–14, 2011. ACM, New York (2011)
Chase, C., Serrano, J., Ramadge, P.J.: Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Trans. Autom. Control 38(1), 70–83 (1993)
Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: RTSS, pp. 183–192. IEEE, Piscataway (2012)
Chernikova, N.V.: Algorithm for discovering the set of all solutions of a linear programming problem. USSR Comput. Math. Math. Phys. 8(6), 282–293 (1968)
Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134, 135, 143, 167, 179, 180], pp. 76–90
Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Proc. of CAV 2000: Computer Aided Verification. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)
Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems, vol. 1. Springer, Heidelberg (1980)
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Barkhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)
Collins, P.: Optimal semicomputable approximations to reachable and invariant sets. Theory Comput. Syst. 41(1), 33–48 (2007)
Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebraic Program. 62(2), 191–245 (2005)
Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating traffic agents. Int. J. Control 79(5), 395–421 (2006)
Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the Bernstein expansion. Reliab. Comput. 17(2), 128–152 (2012)
Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb. Theory 14, 288–297 (1973)
Darboux, J.-G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bull. Sci. Math. Astron. 2(1), 151–200 (1878)
De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form. Methods Syst. Des. 33(1–3), 45–84 (2008)
De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed implementations. Form. Asp. Comput. 17(3), 319–341 (2005)
Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)
Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Proc. of FORMATS 2005: Formal Modelling and Analysis of Timed Systems. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)
Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Formal Modeling and Analysis of Timed Systems, pp. 171–186. Springer, Heidelberg (2006)
Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure—the electronic throttle control case study. Int. J. Found. Comput. Sci. 17(4), 885–902 (2006)
Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)
Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: CSL. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)
Frazzoli, E., Grosu, R. (eds.): Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, USA, April 12–14, 2011. ACM, New York (2011)
Frehse, G.: Compositional verification of hybrid systems using simulation relations. PhD thesis, Radboud Universiteit Nijmegen (October 2005)
Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)
Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806. Springer, Heidelberg (2011)
Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 203–212. ACM, New York (2013)
Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using forward/backward abstraction refinement. In: Gielen, G.G.E. (ed.) DATE, pp. 257–262. European Design and Automation Association, Leuven (2006)
Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985)
Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction, CADE-25. LNCS, vol. 9195, pp. 527–538. Springer, Heidelberg (2015)
Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014)
Ghosh, P.K., Kumar, K.V.: Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vis. Image Underst. 72(3), 379–403 (1998)
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)
Girard, A.: Controller synthesis for safety and reachability via approximate bisimulation. Automatica 48(5), 947–953 (2012)
Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)
Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)
Girard, A., Zheng, G.: Verification of safety and liveness properties of metric transition systems. ACM Trans. Embed. Comput. Syst. 11(S2), 54 (2012)
Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)
Greenstreet, M.R.: Verifying safety properties of differential equations. In: Computer Aided Verification. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. LNCS, vol. 736. Springer, Heidelberg (1993)
Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)
Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. Theor. Comput. Sci. 342(2), 229–261 (2005)
Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: International Static Analysis Symposium, SAS’94, Namur (1994)
Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: the next generation. In: Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS ’95), p. 56. IEEE, Piscataway (1995)
Henzinger, T.A.: Hybrid automata with finite bisimulations. In: ICALP: Automata, Languages, and Programming. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)
Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122 (1997)
Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the 29th Annual Symposium on Principles of Programming Languages, pp. 58–70. ACM, New York (2002)
Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences, vol. 170, pp. 265–292. Springer, Heidelberg (2000)
Henzinger, T.A., Ho, P.-H.: A note on abstract interpretation strategies for hybrid automata. In: Hybrid Systems II, pp. 252–264. Springer, Heidelberg (1995)
Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43, 540–554 (1998)
Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata. In: CONCUR: Concurrency Theory. LNCS, vol. 1119, pp. 530–545. Springer, Heidelberg (1996)
Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor. Comput. Sci. 221, 369–392 (1999)
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57, 94–124 (1998)
Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)
Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Formal Methods for Industrial Applications. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1995)
Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In: Wolper, P. (ed.) CAV. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg (1995)
Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical systems: an aircraft landing protocol case study. In: ICCPS, pp. 161–170. IEEE, Piscataway (2012)
Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. PATH Research Report UCB-ITS-PRR-99-13, Institute of Transportation Studies, University of California, Berkeley (1999)
Agung Julius, A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Hybrid Systems: Computation and Control, pp. 329–342. Springer, Heidelberg (2007)
Kim, K.-D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100, 1287–1308 (2012). Centennial-Issue
Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F. (eds.) HSCC, pp. 263–272. ACM, New York (2013)
Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998)
Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (ET). In: 45th IEEE Conference on Decision and Control, pp. 1498–1503. IEEE, Piscataway (2006)
Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007)
Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Signals Syst. 13(1), 1–21 (2000)
Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)
Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. PhD thesis, Université Grenoble 1, Joseph Fourier (2009)
Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—A Cyber-Physical Systems Approach (2013). Lulu.com
Lerda, F., Kapinski, J., Clarke, E.M., Krogh, B.H.: Verification of supervisory control software using state proximity and merging. In: Hybrid Systems: Computation and Control, pp. 344–357. Springer, Heidelberg (2008)
Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE 88(7), 926–947 (2000)
Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)
Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency analysis of formally verified adaptive cruise controllers. In: Hegyi, A., De Schutter, B. (eds.) ITSC. Springer, Heidelberg (2013)
Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Applied Optimization, vol. 89. Kluwer Academic, Boston (2004)
Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)
Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185(1), 105–157 (2003)
Maler, O.: Algorithmic verification of continuous and hybrid systems. In: Int. Workshop on Verification of Infinite-State System (Infinity) (2013)
Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX Workshop, vol. 600, pp. 447–484. Springer, Heidelberg (1991)
Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 6th International Workshop, HSCC 2003, Prague, Czech Republic, April 3–5, 2003. LNCS, vol. 2623. Springer, Heidelberg (2003)
Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer, Heidelberg (2010)
Matringe, N., Vieira Moura, A., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010)
Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000)
Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.) Proc. of the 2nd Int. Joint Conference on Artificial Intelligence, London, UK, September 1971. pp. 481–489. William Kaufmann, British Computer Society, London (1971)
Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)
Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)
Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control. LNCS, vol. 3414, pp. 480–494. Springer, Heidelberg (2005)
Mitra, S., Wang, Y., Lynch, N.A., Feron, E.: Safety verification of model helicopter controller using hybrid input/output automata. In: Maler and Pnueli [8, 91], pp. 343–358
Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics: Science and Systems (2013)
Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol. 3, pp. 2947–2952 (1992)
Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman et al. [135, 141], pp. 317–356
Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In: Validation Numerics, pp. 175–190. Springer, Heidelberg (1993)
Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis of hybrid systems. In: Grossman et al. [7, 12, 39, 80, 103, 143, 163, 171, 172], pp. 149–178
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)
Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)
Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)
Platzer, A.: Quantified differential invariants. In: Frazzoli and Grosu [165], pp. 63–72
Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 431–445. Springer, Heidelberg (2011)
Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012). Special issue for selected papers from CSL’10
Platzer, A.: The complete proof theory of hybrid systems. In: LICS [137], pp. 541–550
Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer, L., Felty, A. (eds.) ITP. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012)
Platzer, A.: Logics of dynamical systems. In: LICS [111, 122], pp. 13–24
Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Methods Comput. Sci. 8(4), 1–38 (2012)
Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017)
Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg (2018)
Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134–136, 167, 179, 180], pp. 473–486
Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009)
Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)
Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008)
Platzer, A., Quesel, J.-D.: European Train Control System: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)
Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Frazzoli and Grosu [22], pp. 133–142
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [55, 63], pp. 477–492
Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1429 (2007)
Puri, A.: Dynamical properties of timed automata. In: FTRTFT ’98. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)
Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusion. In: Proc. of CAV. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994)
Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: TAMC 2010: 7th Annual Conference on Theory and Applications of Models of Computation. LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010)
Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. Trans. Embed. Comput. Syst. 6(1), 8 (2007)
Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp. 221–230. ACM, New York (2010)
Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 188–202. Springer, Heidelberg (2008)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Form. Methods Syst. Des. 32(1), 25–55 (2008)
Segelken, M.: Abstraction and counterexample-guided construction of \(\omega \)-automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)
Sokolsky, O., Lee, I., Heimdahl, M.P.E.: Challenges in the regulatory approval of medical cyber-physical systems. In: Chakraborty et al. [44], pp. 227–232
Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system using counterexample-guided search. Control Eng. Pract. 12(10), 1269–1278 (2004)
Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Heidelberg (2009)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)
Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6), 665–683 (1987)
Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [6, 96], pp. 514–525
Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008)
Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008)
Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE, Piscataway (2011)
Tiwari, A., Shankar, N., Rushby, J.M.: Invisible formal methods for embedded control systems. Proc. IEEE 91(1), 29–39 (2003)
Tiwary, H.R.: On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom. 40(3), 469–479 (2008)
Tomlin, C., Pappas, G., Košecká, J., Lygeros, J., Sastry, S.: Advanced air traffic automation: a case study in distributed decentralized control. In: Siciliano, B., Valavanis, K. (eds.) Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, vol. 230, pp. 261–295. Springer, Heidelberg (1998)
Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)
Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O automata and the PVS theorem prover: a case study. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM, vol. 4085, pp. 64–80. Springer, Heidelberg (2006)
Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: a refinement approach. In: Bemporad et al. [136], pp. 557–572
Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Proceedings of the Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March 29–31, 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)
van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebraic Program. 68(1–2), 129–210 (2006)
van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Concrete syntax and semantics of the compositional interchange format for hybrid systems. In: 17th IFAC World Congress (2008)
Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Hybrid Systems. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1997)
Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically controlled hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC. LNCS, vol. 5469, pp. 396–410. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Doyen, L., Frehse, G., Pappas, G.J., Platzer, A. (2018). Verification of Hybrid Systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking. Springer, Cham. https://doi.org/10.1007/978-3-319-10575-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-10575-8_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10574-1
Online ISBN: 978-3-319-10575-8
eBook Packages: Computer ScienceComputer Science (R0)