Skip to main content

Verification of Hybrid Systems

  • Chapter
  • First Online:
Handbook of Model Checking

Abstract

Hybrid systems are models which combine discrete and continuous behavior. They occur frequently in safety-critical applications in various domains such as health care, transportation, and robotics, as a result of interactions between a digital controller and a physical environment. They also have relevance in other areas such as systems biology, in which the discrete dynamics arises as an abstraction of fast continuous processes. One of the prominent models is that of hybrid automata, where differential equations are associated with each node, and jump constraints such as guards and resets are associated with each edge.

In this chapter, we focus on the problem of model checking of hybrid automata against reachability and invariance properties, enabling the verification of general temporal logic specifications. We review the main decidability results for hybrid automata, and since model checking is in general undecidable, we present three complementary analysis approaches based on symbolic representations, abstraction, and logic. In particular, we illustrate polyhedron-based reachability analysis, finite quotients, abstraction refinement techniques, and logic-based verification. We survey important tools and application domains of successful hybrid system verification in this vibrant area of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE (2012)

    Google Scholar 

  2. Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 59, 371–383 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic systems with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Springer, Heidelberg (2011)

    Google Scholar 

  4. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM, New York (2013)

    MATH  Google Scholar 

  5. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis of hybrid systems. In: Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 45–54. ACM, New York (2012)

    MATH  Google Scholar 

  6. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alur, R.: Formal verification of hybrid systems. In: Chakraborty et al. [8, 34, 35, 91, 132], pp. 273–278

    Google Scholar 

  8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman et al. [31, 100, 113, 129, 149, 174–177], pp. 209–229

    Google Scholar 

  9. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid systems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

    Article  MATH  Google Scholar 

  11. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)

    Article  Google Scholar 

  13. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)

    Article  Google Scholar 

  14. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993)

    Google Scholar 

  15. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Domenica Di Benedetto, M., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

    Google Scholar 

  16. Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 7th International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  17. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur and Pappas [24, 46, 53, 62, 101, 114, 164, 168], pp. 32–47

    Google Scholar 

  18. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inform. 43(7), 451–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Proc. HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

    Chapter  MATH  Google Scholar 

  20. Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for refinement. In: Automated Technology for Verification and Analysis, pp. 37–51. Springer, Heidelberg (2010)

    Chapter  MATH  Google Scholar 

  21. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

    Article  MathSciNet  Google Scholar 

  23. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of infinite paths in one-clock timed automata. In: Proc. of LICS, pp. 217–226. IEEE, Piscataway (2008)

    Google Scholar 

  24. Balluchi, A., Di Natale, F., Sangiovanni-Vincentelli, A.L., van Schuppen, J.H.: Synthesis for idle speed control of an automotive engine. In: Alur and Pappas [130, 182], pp. 80–94

    Google Scholar 

  25. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Proc. of HSCC. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

    Google Scholar 

  26. Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 10th International Conference, HSCC 2007, Pisa, Italy. LNCS, vol. 4416. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  27. Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager and van Schuppen [104], pp. 31–45

    Chapter  MATH  Google Scholar 

  28. Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching controllers for linear hybrid systems: safety control. Theor. Comput. Sci. 493, 116–138 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Comput. Sci. 335(2–3), 215–280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic management systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–231 (2000)

    Article  Google Scholar 

  32. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)

    Book  MATH  Google Scholar 

  33. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput. Sci. 321(2–3), 291–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Branicky, M.S.: General hybrid dynamical systems: modeling, analysis, and control. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems, vol. 1066, pp. 186–200. Springer, Heidelberg (1995)

    Google Scholar 

  35. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On reachability for hybrid automata over bounded time. In: Proceedings of ICALP 2011: International Colloquium on Automata, Languages and Programming (Part II). LNCS, vol. 6756, pp. 416–427. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  37. Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear hybrid automata. In: Formal Methods in Computer-Aided Design, 2008. FMCAD’08, pp. 1–4. IEEE, Piscataway (2008)

    Google Scholar 

  38. Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. PhD thesis, University of Innsbruck (1965)

    Google Scholar 

  39. Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages and tools for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006)

    Article  MATH  Google Scholar 

  40. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152 (2000)

    Google Scholar 

  41. Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.): Proceedings of the 11th International Conference on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9–14, 2011. ACM, New York (2011)

    Google Scholar 

  42. Chase, C., Serrano, J., Ramadge, P.J.: Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems. IEEE Trans. Autom. Control 38(1), 70–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: RTSS, pp. 183–192. IEEE, Piscataway (2012)

    Google Scholar 

  44. Chernikova, N.V.: Algorithm for discovering the set of all solutions of a linear programming problem. USSR Comput. Math. Math. Phys. 8(6), 282–293 (1968)

    Article  MATH  Google Scholar 

  45. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager and van Schuppen [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134, 135, 143, 167, 179, 180], pp. 76–90

    Google Scholar 

  46. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Proc. of CAV 2000: Computer Aided Verification. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Google Scholar 

  48. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems, vol. 1. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  49. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Barkhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  50. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. Collins, P.: Optimal semicomputable approximations to reachable and invariant sets. Theory Comput. Syst. 41(1), 33–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebraic Program. 62(2), 191–245 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating traffic agents. Int. J. Control 79(5), 395–421 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the Bernstein expansion. Reliab. Comput. 17(2), 128–152 (2012)

    MathSciNet  Google Scholar 

  55. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb. Theory 14, 288–297 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  56. Darboux, J.-G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bull. Sci. Math. Astron. 2(1), 151–200 (1878)

    MATH  Google Scholar 

  57. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form. Methods Syst. Des. 33(1–3), 45–84 (2008)

    Article  MATH  Google Scholar 

  58. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed implementations. Form. Asp. Comput. 17(3), 319–341 (2005)

    Article  MATH  Google Scholar 

  59. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Proc. of FORMATS 2005: Formal Modelling and Analysis of Timed Systems. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

    Google Scholar 

  61. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Formal Modeling and Analysis of Timed Systems, pp. 171–186. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  62. Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure—the electronic throttle control case study. Int. J. Found. Comput. Sci. 17(4), 885–902 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  64. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states. In: CSL. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)

    Google Scholar 

  65. Frazzoli, E., Grosu, R. (eds.): Proceedings of the 14th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2011, Chicago, USA, April 12–14, 2011. ACM, New York (2011)

    Google Scholar 

  66. Frehse, G.: Compositional verification of hybrid systems using simulation relations. PhD thesis, Radboud Universiteit Nijmegen (October 2005)

    Google Scholar 

  67. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806. Springer, Heidelberg (2011)

    Google Scholar 

  69. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 203–212. ACM, New York (2013)

    MATH  Google Scholar 

  70. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using forward/backward abstraction refinement. In: Gielen, G.G.E. (ed.) DATE, pp. 257–262. European Design and Automation Association, Leuven (2006)

    Google Scholar 

  71. Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  72. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction, CADE-25. LNCS, vol. 9195, pp. 527–538. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  73. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014)

    Google Scholar 

  74. Ghosh, P.K., Kumar, K.V.: Support function representation of convex bodies, its application in geometric computing, and some related representations. Comput. Vis. Image Underst. 72(3), 379–403 (1998)

    Article  Google Scholar 

  75. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

    Google Scholar 

  76. Girard, A.: Controller synthesis for safety and reachability via approximate bisimulation. Automatica 48(5), 947–953 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  77. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

    Google Scholar 

  78. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE Trans. Autom. Control 52(5), 782–798 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Girard, A., Zheng, G.: Verification of safety and liveness properties of metric transition systems. ACM Trans. Embed. Comput. Syst. 11(S2), 54 (2012)

    Article  Google Scholar 

  80. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  81. Greenstreet, M.R.: Verifying safety properties of differential equations. In: Computer Aided Verification. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  82. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. LNCS, vol. 736. Springer, Heidelberg (1993)

    Google Scholar 

  83. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)

    Google Scholar 

  84. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta, A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)

    Google Scholar 

  85. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and hybrid systems. Theor. Comput. Sci. 342(2), 229–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  86. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: International Static Analysis Symposium, SAS’94, Namur (1994)

    Google Scholar 

  87. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: the next generation. In: Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS ’95), p. 56. IEEE, Piscataway (1995)

    Chapter  Google Scholar 

  88. Henzinger, T.A.: Hybrid automata with finite bisimulations. In: ICALP: Automata, Languages, and Programming. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  89. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122 (1997)

    Article  MATH  Google Scholar 

  90. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the 29th Annual Symposium on Principles of Programming Languages, pp. 58–70. ACM, New York (2002)

    Google Scholar 

  91. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verification of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences, vol. 170, pp. 265–292. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  92. Henzinger, T.A., Ho, P.-H.: A note on abstract interpretation strategies for hybrid automata. In: Hybrid Systems II, pp. 252–264. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  93. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Autom. Control 43, 540–554 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  94. Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata. In: CONCUR: Concurrency Theory. LNCS, vol. 1119, pp. 530–545. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  95. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor. Comput. Sci. 221, 369–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  96. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57, 94–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  97. Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  98. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Formal Methods for Industrial Applications. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  99. Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In: Wolper, P. (ed.) CAV. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg (1995)

    Google Scholar 

  100. Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical systems: an aircraft landing protocol case study. In: ICCPS, pp. 161–170. IEEE, Piscataway (2012)

    Google Scholar 

  101. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane changing and merging. PATH Research Report UCB-ITS-PRR-99-13, Institute of Transportation Studies, University of California, Berkeley (1999)

    Google Scholar 

  102. Agung Julius, A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Hybrid Systems: Computation and Control, pp. 329–342. Springer, Heidelberg (2007)

    Chapter  MATH  Google Scholar 

  103. Kim, K.-D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100, 1287–1308 (2012). Centennial-Issue

    Article  Google Scholar 

  104. Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F. (eds.) HSCC, pp. 263–272. ACM, New York (2013)

    Chapter  Google Scholar 

  105. Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect. Computing 61(1), 47–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  106. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (ET). In: 45th IEEE Conference on Decision and Control, pp. 1498–1503. IEEE, Piscataway (2006)

    Chapter  Google Scholar 

  107. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  108. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Signals Syst. 13(1), 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  109. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  110. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics. PhD thesis, Université Grenoble 1, Joseph Fourier (2009)

    Google Scholar 

  111. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—A Cyber-Physical Systems Approach (2013). Lulu.com

    MATH  Google Scholar 

  112. Lerda, F., Kapinski, J., Clarke, E.M., Krogh, B.H.: Verification of supervisory control software using state proximity and merging. In: Hybrid Systems: Computation and Control, pp. 344–357. Springer, Heidelberg (2008)

    Chapter  MATH  Google Scholar 

  113. Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc. IEEE 88(7), 926–947 (2000)

    Article  Google Scholar 

  114. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011)

    Google Scholar 

  115. Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency analysis of formally verified adaptive cruise controllers. In: Hegyi, A., De Schutter, B. (eds.) ITSC. Springer, Heidelberg (2013)

    Google Scholar 

  116. Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Applied Optimization, vol. 89. Kluwer Academic, Boston (2004)

    MATH  Google Scholar 

  117. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools, Applications. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  118. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185(1), 105–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  119. Maler, O.: Algorithmic verification of continuous and hybrid systems. In: Int. Workshop on Verification of Infinite-State System (Infinity) (2013)

    Google Scholar 

  120. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX Workshop, vol. 600, pp. 447–484. Springer, Heidelberg (1991)

    Google Scholar 

  121. Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control, Proceedings of the 6th International Workshop, HSCC 2003, Prague, Czech Republic, April 3–5, 2003. LNCS, vol. 2623. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  122. Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  123. Matringe, N., Vieira Moura, A., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010)

    Google Scholar 

  124. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  125. Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.) Proc. of the 2nd Int. Joint Conference on Artificial Intelligence, London, UK, September 1971. pp. 481–489. William Kaufmann, British Computer Society, London (1971)

    Google Scholar 

  126. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    MATH  Google Scholar 

  127. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  128. Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control. LNCS, vol. 3414, pp. 480–494. Springer, Heidelberg (2005)

    Chapter  MATH  Google Scholar 

  129. Mitra, S., Wang, Y., Lynch, N.A., Feron, E.: Safety verification of model helicopter controller using hybrid input/output automata. In: Maler and Pnueli [8, 91], pp. 343–358

    Google Scholar 

  130. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics: Science and Systems (2013)

    Google Scholar 

  131. Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Proceedings of the 31st IEEE Conference on Decision and Control, vol. 3, pp. 2947–2952 (1992)

    Google Scholar 

  132. Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman et al. [135, 141], pp. 317–356

    Chapter  Google Scholar 

  133. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In: Validation Numerics, pp. 175–190. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  134. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis of hybrid systems. In: Grossman et al. [7, 12, 39, 80, 103, 143, 163, 171, 172], pp. 149–178

    Google Scholar 

  135. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  136. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  137. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  138. Platzer, A.: Quantified differential invariants. In: Frazzoli and Grosu [165], pp. 63–72

    Google Scholar 

  139. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 431–445. Springer, Heidelberg (2011)

    Google Scholar 

  140. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012). Special issue for selected papers from CSL’10

    MathSciNet  MATH  Google Scholar 

  141. Platzer, A.: The complete proof theory of hybrid systems. In: LICS [137], pp. 541–550

    Google Scholar 

  142. Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer, L., Felty, A. (eds.) ITP. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012)

    Google Scholar 

  143. Platzer, A.: Logics of dynamical systems. In: LICS [111, 122], pp. 13–24

    Google Scholar 

  144. Platzer, A.: The structure of differential invariants and differential cut elimination. Log. Methods Comput. Sci. 8(4), 1–38 (2012)

    MathSciNet  MATH  Google Scholar 

  145. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  146. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg (2018)

    Book  Google Scholar 

  147. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad et al. [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134–136, 167, 179, 180], pp. 473–486

    Google Scholar 

  148. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. Form. Methods Syst. Des. 35(1), 98–120 (2009)

    Article  MATH  Google Scholar 

  149. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

    Google Scholar 

  150. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

    Google Scholar 

  151. Platzer, A., Quesel, J.-D.: European Train Control System: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009)

    Google Scholar 

  152. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Frazzoli and Grosu [22], pp. 133–142

    Google Scholar 

  153. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur and Pappas [55, 63], pp. 477–492

    Google Scholar 

  154. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  155. Puri, A.: Dynamical properties of timed automata. In: FTRTFT ’98. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)

    Google Scholar 

  156. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusion. In: Proc. of CAV. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994)

    Google Scholar 

  157. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In: TAMC 2010: 7th Annual Conference on Theory and Applications of Models of Computation. LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010)

    Google Scholar 

  158. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. Trans. Embed. Comput. Syst. 6(1), 8 (2007)

    Article  MATH  Google Scholar 

  159. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp. 221–230. ACM, New York (2010)

    Google Scholar 

  160. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems using template polyhedra. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 188–202. Springer, Heidelberg (2008)

    Chapter  MATH  Google Scholar 

  161. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Form. Methods Syst. Des. 32(1), 25–55 (2008)

    Article  MATH  Google Scholar 

  162. Segelken, M.: Abstraction and counterexample-guided construction of \(\omega \)-automata for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

    Google Scholar 

  163. Sokolsky, O., Lee, I., Heimdahl, M.P.E.: Challenges in the regulatory approval of medical cyber-physical systems. In: Chakraborty et al. [44], pp. 227–232

    Google Scholar 

  164. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system using counterexample-guided search. Control Eng. Pract. 12(10), 1269–1278 (2004)

    Article  Google Scholar 

  165. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  166. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

    MATH  Google Scholar 

  167. Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6), 665–683 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  168. Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [6, 96], pp. 514–525

    Chapter  MATH  Google Scholar 

  169. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008)

    Article  MATH  Google Scholar 

  170. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008)

    Google Scholar 

  171. Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE, Piscataway (2011)

    Google Scholar 

  172. Tiwari, A., Shankar, N., Rushby, J.M.: Invisible formal methods for embedded control systems. Proc. IEEE 91(1), 29–39 (2003)

    Article  Google Scholar 

  173. Tiwary, H.R.: On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom. 40(3), 469–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  174. Tomlin, C., Pappas, G., Košecká, J., Lygeros, J., Sastry, S.: Advanced air traffic automation: a case study in distributed decentralized control. In: Siciliano, B., Valavanis, K. (eds.) Control Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences, vol. 230, pp. 261–295. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  175. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MATH  Google Scholar 

  176. Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O automata and the PVS theorem prover: a case study. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM, vol. 4085, pp. 64–80. Springer, Heidelberg (2006)

    Google Scholar 

  177. Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: a refinement approach. In: Bemporad et al. [136], pp. 557–572

    Google Scholar 

  178. Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Proceedings of the Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March 29–31, 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)

    MATH  Google Scholar 

  179. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and consistent equation semantics of hybrid Chi. J. Log. Algebraic Program. 68(1–2), 129–210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  180. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Concrete syntax and semantics of the compositional interchange format for hybrid systems. In: 17th IFAC World Congress (2008)

    Google Scholar 

  181. Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Hybrid Systems. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1997)

    Google Scholar 

  182. Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically controlled hybrid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC. LNCS, vol. 5469, pp. 396–410. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Platzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doyen, L., Frehse, G., Pappas, G.J., Platzer, A. (2018). Verification of Hybrid Systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds) Handbook of Model Checking. Springer, Cham. https://doi.org/10.1007/978-3-319-10575-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10575-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10574-1

  • Online ISBN: 978-3-319-10575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics