Advertisement

Abstraction and Abstraction Refinement

  • Dennis Dams
  • Orna Grumberg
Chapter

Abstract

Abstraction, in the context of model checking, is aimed at reducing the state space of the system by omitting details that are irrelevant to the property being verified. Many successful approaches to the “state explosion problem,” some of them described in other chapters, can be seen as abstractions. In this chapter, several notions of abstraction are considered in a uniform setting. Different such notions lead to a variety of preservation results that establish which kind of temporal properties may be verified via an abstracted system. We first define the needed background on simulation and bisimulation relations and their logic preservation. We then present the abstraction that is currently most widely used in practice: existential abstraction, which preserves universal fragments of branching-time logics. We give examples of such abstractions: localization reduction for hardware and predicate abstraction for software. We then proceed to stronger abstractions which preserve full branching-time logics. We introduce Kripke Modal Transition Systems and modal simulation, and show logic preservation. We close the chapter with a review of the presented results in the light of the notion of completeness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Alfaro, L., Godefroid, P., Jagadeesan, R.: Three-valued abstractions of games: uncertainty, but with precision. In: Symp. on Logic in Computer Science (LICS), pp. 170–179. ACM, New York (2004) Google Scholar
  2. 2.
    Amla, N., McMillan, K.L.: A hybrid of counterexample-based and proof-based abstraction. In: Hu, A.J., Martin, A.K. (eds.) Formal Methods in Computer Aided Design (FMCAD). LNCS, vol. 3312, pp. 260–274. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs. In: Margaria, T., Yi, W. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001) Google Scholar
  4. 4.
    Ball, T., Rajamani, S.: Boolean programs: a model and process for software analysis. Tech. Rep. 2000-14, Microsoft Research (2000) Google Scholar
  5. 5.
    Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  6. 6.
    Barner, S., Geist, D., Gringauze, A.: Symbolic localization reduction with reconstruction layering and backtracking. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS. Springer, Heidelberg (2002) Google Scholar
  7. 7.
    Beyer, D., Chlipala, A., Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST query language for software verification. In: Giacobazzi, R. (ed.) SAS. LNCS, vol. 3148, pp. 2–18. Springer, Heidelberg (2004) Google Scholar
  8. 8.
    Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: concretizing the convergence of model checking and program analysis. In: Damm, W., Hermanns, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Beyer, D., Henzinger, T.A., Théoduloz, G.: Program analysis with dynamic precision adjustment. In: Intl. Conf. on Automated Software Engineering (ASE), pp. 29–38. IEEE, Piscataway (2008) Google Scholar
  10. 10.
    Biere, A., Kroening, D.: SAT-based model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) Google Scholar
  11. 11.
    Bobaru, M.G., Pasareanu, C.S., Giannakopoulou, D.: Automated assume-guarantee reasoning by abstraction refinement. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Bouajjani, A., Fernandez, J., Halbwachs, N.: Minimal model generation. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  13. 13.
    Bouali, A., de Simone, R.: Symbolic bisimulation minimisation. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 663, pp. 96–108. Springer, Heidelberg (1992) CrossRefGoogle Scholar
  14. 14.
    Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) Google Scholar
  15. 15.
    Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propositional temporal logic. Theor. Comput. Sci. 59(1–2), 115–131 (1988) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued temporal logics. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, pp. 274–287. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  17. 17.
    Bruns, G., Godefroid, P.: Generalized model checking: reasoning about partial state spaces. In: Intl. Conf. on Concurrency Theory (CONCUR). LNCS, vol. 1877, pp. 168–182. Springer, Heidelberg (2000) Google Scholar
  18. 18.
    Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Intl. Colloquium on Automata, Languages, and Programming (ICALP), pp. 281–293. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  19. 19.
    Bryant, R.E., Beatty, D.L., Seger, C.J.H.: Formal hardware verification by symbolic ternary trajectory evaluation. In: Design Automation Conf. (DAC), pp. 397–402 (1991) Google Scholar
  20. 20.
    Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput. Log. 4(2), 181–206 (2003) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chaki, S., Gurfinkel, A.: BDD-based symbolic model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) zbMATHGoogle Scholar
  22. 22.
    Chaki, S., Strichman, O.: Optimized L*-based assume-guarantee reasoning. In: Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, pp. 276–291. Springer, Heidelberg (2007) Google Scholar
  23. 23.
    Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith, H., Wang, D.: Automated abstraction refinement for model checking large state spaces using SAT based conflict analysis. In: Formal Methods in Computer Aided Design (FMCAD). IEEE, Piscataway (2002) Google Scholar
  24. 24.
    Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic model-checking. ACM Trans. Softw. Eng. Methodol. 12, 371–408 (2003) CrossRefGoogle Scholar
  25. 25.
    Chechik, M., Devereux, B., Gurfinkel, A., Easterbrook, S.: Multi-valued symbolic model-checking. Tech. Rep. CSRG-448, University of Toronto (2002) Google Scholar
  26. 26.
    Chen, Y., He, Y., Xie, F., Yang, J.: Automatic abstraction refinement for generalized symbolic trajectory evaluation. In: Formal Methods in Computer Aided Design (FMCAD). IEEE/ACM, Piscataway/New York (2007) Google Scholar
  27. 27.
    Chockler, H., Grumberg, O., Yadgar, A.: Efficient automatic STE refinement using responsibility. In: Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4963. Springer, Heidelberg (2008) Google Scholar
  28. 28.
    Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos—a software model checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 310–316. Springer, Heidelberg (2011) Google Scholar
  29. 29.
    Cimatti, A., Narasamdya, I., Roveri, M.: Software model checking SystemC. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(5), 774–787 (2013) CrossRefGoogle Scholar
  30. 30.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. J. ACM 50(5), 752–794 (2003) MathSciNetCrossRefGoogle Scholar
  31. 31.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999) Google Scholar
  32. 32.
    Clarke, E., Gupta, A., Kukula, J., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning techniques. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404. Springer, Heidelberg (2002) Google Scholar
  33. 33.
    Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-Based Predicate Abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005) zbMATHGoogle Scholar
  34. 34.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994) CrossRefGoogle Scholar
  35. 35.
    Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like counterexamples in model checking. In: Symp. on Logic in Computer Science (LICS), pp. 19–29. IEEE, Piscataway (2002) Google Scholar
  36. 36.
    Clarke, E.M., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C programs using SAT. Form. Methods Syst. Des. 25(2–3), 105–127 (2004) CrossRefGoogle Scholar
  37. 37.
    Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28, 324–328 (1996) CrossRefGoogle Scholar
  38. 38.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Symp. on Principles of Programming Languages (POPL), pp. 238–252. ACM, New York (1977) Google Scholar
  39. 39.
    Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Symp. on Principles of Programming Languages (POPL), pp. 12–25. ACM, New York (2000) Google Scholar
  40. 40.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. Trans. Program. Lang. Syst. 19(2), 253–291 (1997) CrossRefGoogle Scholar
  41. 41.
    Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time model checking. In: Symp. on Logic in Computer Science (LICS), pp. 335–344. IEEE, Piscataway (2004) Google Scholar
  42. 42.
    Dams, D., Namjoshi, K.S.: Automata as abstractions. In: Intl. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  43. 43.
    De Nicola, R.: Extensional equivalences for transition systems. Acta Inform. 24(2), 211–237 (1987) MathSciNetCrossRefGoogle Scholar
  44. 44.
    De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995) MathSciNetCrossRefGoogle Scholar
  45. 45.
    Gazda, M., Willemse, T.A.C.: Expressiveness and completeness in abstraction. In: Luttik, B., Reniers, M.A. (eds.) Proc. Combined 19th Intl. Workshop on Expressiveness in Concurrency and 9th Workshop on Structured Operational Semantics, EXPRESS/SOS. EPTCS, vol. 89, pp. 49–64 (2012) Google Scholar
  46. 46.
    Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model checking. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2404, pp. 137–150. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  47. 47.
    Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  48. 48.
    Grumberg, O.: Abstraction and refinement in model checking. In: Intl. Conf. on Formal Methods for Components and Objects (FMCO). LNCS, vol. 4111. Springer, Heidelberg (2005) Google Scholar
  49. 49.
    Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t know in \(\mu\)-calculus. In: Intl. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI). LNCS. Springer, Heidelberg (2005) Google Scholar
  50. 50.
    Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than winning: abstraction and refinement for the full mu-calculus. Inf. Comput. 205, 1130–1148 (2007) CrossRefGoogle Scholar
  51. 51.
    Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans. Program. Lang. Syst. 16, 843–872 (1994) CrossRefGoogle Scholar
  52. 52.
    Grumberg, O., Schuster, A., Yadgar, A.: 3-valued circuit SAT for STE with automatic refinement. In: Intl. Symp. Automated Technology for Verification and Analysis (ATVA). LNCS, vol. 4762. Springer, Heidelberg (2007) Google Scholar
  53. 53.
    Gupta, A., Ganai, M., Yang, Z., Ashar, P.: Iterative abstraction using SAT-based BMC with proof analysis. In: International Conference on Computer Aided Design (ICCAD), p. 416. IEEE, Piscataway (2003) Google Scholar
  54. 54.
    Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  55. 55.
    Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In: Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, pp. 212–226. Springer, Heidelberg (2006) Google Scholar
  56. 56.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985) MathSciNetCrossRefGoogle Scholar
  57. 57.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: FOCS: Foundations of Computer Science, pp. 453–462. IEEE, Piscataway (1995) Google Scholar
  58. 58.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Symp. on Principles of Programming Languages (POPL), pp. 232–244. ACM, New York (2004) Google Scholar
  59. 59.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 232–244. ACM, New York (2004) Google Scholar
  60. 60.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp. 58–70. ACM, New York (2002) CrossRefGoogle Scholar
  61. 61.
    Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: a foundation for three-valued program analysis. In: Sands, D. (ed.) Programming Languages and Systems. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  62. 62.
    Jain, H., Ivancic, F., Gupta, A., Shlyakhter, I., Wang, C.: Using statically computed invariants inside the predicate abstraction and refinement loop. In: Ball, T., Jones, R.B. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 137–151. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  63. 63.
    Jain, H., Kroening, D., Sharygina, N., Clarke, E.: Word level predicate abstraction and refinement for verifying RTL Verilog. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27, 366–379 (2008) CrossRefGoogle Scholar
  64. 64.
    Jhala, R., McMillan, K.: Array abstractions from proofs. In: Damm, W., Hermanns, H. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  65. 65.
    Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program verification. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) Google Scholar
  66. 66.
    Kesten, Y., Pnueli, A.: Verification by augmented finitary abstraction. Inf. Comput. 163(1), 203–243 (2000) MathSciNetCrossRefGoogle Scholar
  67. 67.
    Kozen, D.: Results on the propositional \(\mu\)-calculus. In: 9th Colloquium on Automata, Languages and Programming (ICALP). LNCS, vol. 140, pp. 348–359. Springer, Heidelberg (1982) CrossRefGoogle Scholar
  68. 68.
    Kroening, D., Sharygina, N.: Image computation and predicate refinement for RTL Verilog using word level proofs. In: Lauwereins, R., Madsen, J. (eds.) Design, Automation & Test in Europe (DATE), pp. 1325–1330. ACM, New York (2007) Google Scholar
  69. 69.
    Kroening, D., Weissenbacher, G.: Interpolation-based software verification with Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 573–578. Springer, Heidelberg (2011) Google Scholar
  70. 70.
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton Series in Computer Science. Princeton University Press, Princeton (1994) zbMATHGoogle Scholar
  71. 71.
    Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. Log. Methods Comput. Sci. 3(2) (2007) Google Scholar
  72. 72.
    Larsen, K., Thomsen, B.: A modal process logic. In: Symp. on Logic in Computer Science (LICS), pp. 203–210. IEEE, Piscataway (1988) Google Scholar
  73. 73.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: Symp. on Logic in Computer Science (LICS), pp. 108–117. IEEE, Piscataway (1990) Google Scholar
  74. 74.
    Lee, D., Yannakakis, M.: Online minimization of transition systems (extended abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 264–274. ACM, New York (1992) Google Scholar
  75. 75.
    Li, B., Wang, C., Somenzi, F.: Abstraction refinement in symbolic model checking using satisfiability as the only decision procedure. Int. J. Softw. Tools Technol. Transf. 7(2), 143–155 (2005) CrossRefGoogle Scholar
  76. 76.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Form. Methods Syst. Des. 6, 11–45 (1995) CrossRefGoogle Scholar
  77. 77.
    Mandrykin, M., Mutilin, V., Novikov, E., Khoroshilov, A.V., Shved, P.: Using Linux device drivers for static verification tools benchmarking. Program. Comput. Softw. 38(5), 245–256 (2012) CrossRefGoogle Scholar
  78. 78.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  79. 79.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003) Google Scholar
  80. 80.
    Meller, Y., Grumberg, O., Shoham, S.: A framework for compositional verification of multi-valued systems via abstraction-refinement. In: Liu, Z., Ravn, A.P. (eds.) Intl. Symp. Automated Technology for Verification and Analysis (ATVA). LNCS, vol. 5799, pp. 271–288. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  81. 81.
    Milner, R.: An algebraic definition of simulation between programs. In: Intl. Joint Conf. on Artificial Intelligence (IJCAI), pp. 481–489. British Computer Society, London (1971) Google Scholar
  82. 82.
    Namjoshi, K.: Abstraction for branching time properties. In: Hunt, W.A., Somenzi, F. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2725, pp. 288–300. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  83. 83.
    Park, D.: Concurrency and automata on infinite sequences. In: 5th GI-Conference on Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981) CrossRefGoogle Scholar
  84. 84.
    Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) Google Scholar
  85. 85.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. In: Symp. on Principles of Programming Languages (POPL), pp. 105–118. ACM, New York (1999) Google Scholar
  86. 86.
    Saïdi, H.: Model checking guided abstraction and analysis. In: Palsberg, J. (ed.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 1824, pp. 377–396. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  87. 87.
    Saïdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled, D. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  88. 88.
    Seshia, S.A., Sharygina, N., Tripakis, S.: Modeling for verification. In: Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018) Google Scholar
  89. 89.
    Sharygina, N., Tonetta, S., Tsitovich, A.: An abstraction refinement approach combining precise and approximated techniques. Int. J. Softw. Tools Technol. Transf. 14(1), 1–14 (2012) CrossRefGoogle Scholar
  90. 90.
    Shoham, S., Grumberg, O.: Monotonic abstraction-refinement for CTL. In: Intl. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 2988, pp. 331–346 (2004) Google Scholar
  91. 91.
    Shoham, S., Grumberg, O.: Multi-valued model checking games. In: Peled, D.A., Tsay, Y.K. (eds.) Intl. Symp. Automated Technology for Verification and Analysis (ATVA). LNCS, vol. 3707, pp. 354–369. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  92. 92.
    Shoham, S., Grumberg, O.: Compositional verification and 3-valued abstractions join forces. In: SAS’07. LNCS, vol. 4634. Springer, Heidelberg (2007) Google Scholar
  93. 93.
    Shoham, S., Grumberg, O.: A game-based framework for CTL counterexamples and 3-valued abstraction-refinement. ACM Transactions on Computer Logic (TOCL) 9 (2007) MathSciNetCrossRefGoogle Scholar
  94. 94.
    Shoham, S., Grumberg, O.: 3-valued abstraction: more precision at less cost. Inf. Comput. 206(11), 1313–1333 (2008) MathSciNetCrossRefGoogle Scholar
  95. 95.
    Singh, R., Giannakopoulou, D., Pasareanu, C.: Learning component interfaces with may and must abstractions. In: Touili, T., Cook, B., Jackson, P. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 6174, pp. 527–542. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  96. 96.
    Stirling, C.: Modal and Temporal Properties of Processes. Texts in Computer Science. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  97. 97.
    Tzoref, R., Grumberg, O.: Automatic refinement and vacuity detection for symbolic trajectory evaluation. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 190–204 (2006) CrossRefGoogle Scholar
  98. 98.
    Uribe, T.: Abstraction-based deductive-algorithmic verification of reactive systems. Ph.D. thesis, Computer Science Department, Stanford University (1998). Technical report STAN-CS-TR-99-1618 Google Scholar
  99. 99.
    Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and SAT-based reachability in hardware model checking. In: Formal Methods in Computer Aided Design (FMCAD), pp. 173–181. IEEE, Piscataway (2012) Google Scholar
  100. 100.
    Wachter, B., Kroening, D., Ouaknine, J.: Verifying multi-threaded software with impact. In: Formal Methods in Computer Aided Design (FMCAD), pp. 210–217. IEEE, Piscataway (2013) Google Scholar
  101. 101.
    Wikipedia: The free encyclopedia. www.wikipedia.org (2011). Accessed 15 Nov. 2015
  102. 102.
    Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking concurrent Linux device drivers. In: Intl. Conf. on Automated Software Engineering (ASE), ASE ’07, pp. 501–504. ACM, New York (2007) Google Scholar
  103. 103.
    Yahav, E., Reps, T., Sagiv, M.: LTL model checking for systems with unbounded number of dynamically created threads and objects. Tech. Rep. TR-1424, Computer Sciences Department, University of Wisconsin, Madison, WI (2001) Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Embedded Systems Innovation by TNOEindhovenThe Netherlands
  2. 2.Technion, Israel Institute of TechnologyHaifaIsrael

Personalised recommendations