Skip to main content

Superlubricity in Layered Nanostructures

Part of the NanoScience and Technology book series (NANO)

Abstract

Interaction between two surfaces in relative motion can give rise to energy dissipation and hence sliding friction. A significant portion of the energy is dissipated through the creation of non-equilibrium phonons. Recent advances in material synthesis have made the production of specific single layer honeycomb structures and their multilayer phases, such as graphene, graphane, fluorographene, MoS\(_2\) and WO\(_2\). When coated to the moving surfaces, the attractive interaction between these layers is normally very weak and becomes repulsive at large separation under loading force. Providing a rigorous quantum mechanical treatment for the 3D sliding motion under a constant loading force within Prandtl-Tomlinson model, we derive the critical stiffness required to avoid stick-slip motion. Also these nanostructures acquire low critical stiffness even under high loading force due to their charged surfaces repelling each other. The intrinsic stiffness of these materials exceeds critical stiffness and thereby the materials avoid stick-slip regime and attain nearly dissipationless continuous sliding. Remarkably, layered WO\(_2\) a much better performance as compared to others and promises a potential superlubricant nanocoating. The absence of mechanical instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding layers. Graphene coated metal surfaces also attain superlubricity and hence nearly frictionless sliding through a charge exchange mechanism with metal surface.

Keywords

  • Friction Force
  • Molybdenum Disulfide
  • Honeycomb Structure
  • Bilayer Graphene
  • Graphene Flake

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10560-4_21
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10560-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2
Fig. 21.3
Fig. 21.4
Fig. 21.5
Fig. 21.6
Fig. 21.7
Fig. 21.8
Fig. 21.9
Fig. 21.10
Fig. 21.11
Fig. 21.12
Fig. 21.13

References

  1. L. Prandtl, Z. Angew, Math. Mech. 8, 85 (1928)

    MATH  Google Scholar 

  2. G.A. Tomlinson, Philos. Mag. 7, 905 (1929)

    Google Scholar 

  3. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)

    CrossRef  Google Scholar 

  4. M. Urbakh, E. Meyer, Nature Mat. 9, 8 (2010)

    ADS  CrossRef  Google Scholar 

  5. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59, 1942 (1987)

    ADS  CrossRef  Google Scholar 

  6. D. Tomanék, W. Zhong, H. Thomas, Europhys. Lett. 15, 887 (1991)

    ADS  CrossRef  Google Scholar 

  7. A. Buldum, S. Ciraci, Phys. Rev. B 55, 2606 (1997)

    ADS  CrossRef  Google Scholar 

  8. M.H. Mueser, M. Urbakh, M.O. Robbins, Advances. Chem. Phys. 126, 187 (2003)

    Google Scholar 

  9. V.L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986)

    Google Scholar 

  10. A. Buldum, D.M. Leitner, S. Ciraci, Phys. Rev. B 59, 16042 (1999)

    ADS  CrossRef  Google Scholar 

  11. H. Sevincli, S. Mukhopadhyay, R.T. Senger, S. Ciraci, Phys. Rev. B 76, 205430 (2007)

    ADS  CrossRef  Google Scholar 

  12. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Gntherodt, Phys. Rev. Lett. 84, 1172 (2000)

    ADS  CrossRef  Google Scholar 

  13. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

    ADS  CrossRef  Google Scholar 

  14. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    ADS  CrossRef  Google Scholar 

  15. H. Şahin, C. Ataca, S. Ciraci, Phys. Rev. B 81, 205417 (2010)

    ADS  CrossRef  Google Scholar 

  16. R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Small 6, 2877 (2010)

    CrossRef  Google Scholar 

  17. H. Şahin, M. Topsakal, S. Ciraci, Phys. Rev. B 83, 115432 (2011)

    ADS  CrossRef  Google Scholar 

  18. C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci, J. Phys. Chem. C 115, 16354 (2011)

    CrossRef  Google Scholar 

  19. C. Ataca, H. Sahin, E. Aktürk, S. Ciraci, J. Phys. Chem. C 116, 8983 (2011)

    CrossRef  Google Scholar 

  20. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  CrossRef  MathSciNet  Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  CrossRef  MathSciNet  Google Scholar 

  22. M. Topsakal, S. Cahangirov, S. Ciraci, App. Phys. Lett. 96, 091912 (2010)

    ADS  CrossRef  Google Scholar 

  23. S. Miyake, R. Kaneko, Y. Kikuya, I. Sugimoto, J. Tribol. 113, 384 (1991)

    CrossRef  Google Scholar 

  24. P. Thomas, K. Delbe, D. Himmel, J.L. Mansot, F. Cadore, K. Guerin, M. Dubois, C. Delabarre, A. Hamwi, J. Phys. Chem. Solids 67, 1095 (2006)

    ADS  CrossRef  Google Scholar 

  25. J.M. Martin, C. Donnet, Th. Le Mogne, Th. Epicier, Phys. Rev. B 48, 10583 (1993)

    Google Scholar 

  26. T. Liang, W.G. Sawyer, S.S. Perry, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 77, 104105 (2008)

    ADS  CrossRef  Google Scholar 

  27. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321 (2011)

    CrossRef  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  CrossRef  Google Scholar 

  29. S. Grimme, J. Comp. Chem. 27, 1787 (2006)

    CrossRef  Google Scholar 

  30. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    ADS  CrossRef  Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  CrossRef  Google Scholar 

  32. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    ADS  CrossRef  Google Scholar 

  33. S. Cahangirov, C. Ataca, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 108, 126103 (2012)

    ADS  CrossRef  Google Scholar 

  34. S. Cahangirov, S. Ciraci, V. Ongun, Özçelik. Phys. Rev. B 87, 205428 (2013)

    ADS  CrossRef  Google Scholar 

  35. L.C. Lew, Yan Voon, E. Sandberg, R. S. Aga, A. A. Farajian. Appl. Phys. Lett. 97, 163114 (2010)

    ADS  CrossRef  Google Scholar 

  36. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011)

    ADS  CrossRef  Google Scholar 

  37. S. Cahangirov, E. Aktürk, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    ADS  CrossRef  Google Scholar 

  38. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, Phys. Rev. Lett. 92, 126101 (2004)

    ADS  CrossRef  Google Scholar 

  39. J.S. Choi, J.S. Kim, I.S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, Y.W. Son, J.Y. Park, M. Salmeron, Science 333, 607 (2011)

    ADS  CrossRef  Google Scholar 

  40. A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008)

    ADS  CrossRef  Google Scholar 

  41. A.S. de Wijn, C. Fusco, A. Fasolino, Phys. Rev. E 81, 046105 (2010)

    ADS  CrossRef  Google Scholar 

  42. I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, O.V. Ershova, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 82, 155460 (2010)

    ADS  CrossRef  Google Scholar 

  43. A.M. Popov, I.V. Lebedeva, A.A. Knizhnik, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 84, 045404 (2011)

    ADS  CrossRef  Google Scholar 

  44. H. Lee, N. Lee, Y. Seo, J. Eom, S.W. Lee, Nanotechnology 20, 325701 (2009)

    CrossRef  Google Scholar 

  45. T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, Th. Seyller, K. Horn, R. Bennewitz, Phys. Rev. Lett. 102, 086102 (2009)

    Google Scholar 

  46. C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, J. Hone, Science 328, 76 (2010)

    ADS  CrossRef  Google Scholar 

  47. A. Erdemir, Surf. Coat. Technol. 146, 292 (2001)

    CrossRef  Google Scholar 

  48. D. Berman, A. Erdemir, A.V. Sumant, Carbon 54, 454 (2013)

    CrossRef  Google Scholar 

  49. D. Berman, A. Erdemir, A.V. Sumant, Carbon 59, 167 (2013)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This Chapter is partially based on the doctoral thesis work of S. Cahangirov at Bilkent University and the related research results were initially reported in Phys. Rev. Lett. 108, 126103 (2012) and Phys. Rev. B. 87, 205428 (2013). The authors thank C. Ataca, M. Topsakal, H. Şahin and Ongun Özçelik for their contributions to the theoretical research on sliding friction in our group at UNAM, National Nanotechnolgy Research Center at Bilkent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Ciraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cahangirov, S., Ciraci, S. (2015). Superlubricity in Layered Nanostructures. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_21

Download citation