Skip to main content

Driven Colloidal Monolayers: Static and Dynamic Friction

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Trapping and dragging colloidal monolayers in two-dimensional optical lattices is offering the possibility to mimic friction between crystals (or even quasicrystals) visualizing directly the intimate mechanisms of sliding friction, with the additional possibility to change parameters freely, and to compare directly experiment with theory. Realistic simulations, which we review here, make a number of predictions about static features and dynamic sliding and reproduce well recent observations. Together, they provide a first demonstration of the potential impact of colloid dynamics in nanotribology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spacing of the fully relaxed colloid configuration varies smoothly from \(a \simeq 0.984\) at the sample center to \(a\simeq 1.05\) at the periphery, with an average density equal to that of a triangular crystal of spacing \(a_\mathrm{coll}=1\).

  2. 2.

    Similar models were studied in the past with a view to understand 2D Frenkel-Kontorova models and adsorbate monolayers physics [1922].

References

  1. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, Tosatti E, Rev. Mod. Phys. 85, 529 (2013)

    Google Scholar 

  2. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, Nature (London) 430, 525 (2004)

    Article  ADS  Google Scholar 

  3. T. Bohlein, J. Mikhael, C. Bechinger, Nat. Mater. 11, 126 (2012)

    Article  ADS  Google Scholar 

  4. J. Mikhael, J. Roth, L. Helden, C. Bechinger, Nature (London) 454, 501 (2008)

    Article  ADS  Google Scholar 

  5. J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark, C. Bechinger, Proc. Natl. Acad. Sci. USA 107, 7214 (2010)

    Article  ADS  Google Scholar 

  6. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163 (1997)

    Article  Google Scholar 

  7. A. Vanossi, E. Tosatti, Nat. Mater. 11, 97 (2012)

    Article  ADS  Google Scholar 

  8. C. Reichhardt, C.J. Olson, Phys. Rev. Lett. 88, 248301 (2002)

    Article  ADS  Google Scholar 

  9. C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. Lett. 106, 060603 (2011)

    Google Scholar 

  10. O.M. Braun, YuS Kivshar, The Frenkel-Kontorova Model: Concepts, Methods, and Applications (Springer, Berlin, 2004)

    Book  Google Scholar 

  11. O.M. Braun, A.R. Bishop, J. Röder, Phys. Rev. Lett. 79, 3692 (1997)

    Article  ADS  Google Scholar 

  12. A. Erdemir, J.-M. Martin (eds.), Superlubricity (Elsevier, Amsterdam, 2007)

    Google Scholar 

  13. A. Vanossi, N. Manini, E. Tosatti, P. Natl, Acad. Sci. USA 109, 16429 (2012)

    Article  ADS  Google Scholar 

  14. J. Hasnain, S. Jungblut, C. Dellago, Soft Matter 9, 5867 (2013)

    Article  ADS  Google Scholar 

  15. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885964 (2008)

    Article  Google Scholar 

  16. M. Brunner, C. Bechinger, W. Strepp, V. Lobaskin, H.H. von Grunberg, Europhys. Lett. 58, 926 (2002)

    Article  ADS  Google Scholar 

  17. P.T. Korda, G.C. Spalding, D.G. Grier, Phys. Rev. B 66, 024504 (2002)

    Article  ADS  Google Scholar 

  18. M.J. Ablowitz, B. Ilan, E. Schonbrun, R. Piestun, Phys. Rev. E 74, 035601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. P.S. Lomdahl, D.J. Srolovitz, Phys. Rev. Lett. 57, 2702 (1986)

    Article  ADS  Google Scholar 

  20. D.J. Srolovitz, P.S. Lomdahl, Physica D 23, 402 (1986)

    Article  ADS  Google Scholar 

  21. Y.N. Gornostyrev, M.I. Katsnelson, A.V. Kravtsov, A.V. Trefilov, Phys. Rev. B 60, 1013 (1999)

    Article  ADS  Google Scholar 

  22. O.M. Braun, M.V. Paliy, J. Röder, A.R. Bishop, Phys. Rev. E 63, 036129 (2001)

    Article  ADS  Google Scholar 

  23. M. Peyrard, S. Aubry, J. Phys. C: Solid State Phys. 16, 1593 (1983)

    Article  ADS  Google Scholar 

  24. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  25. A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008)

    Article  ADS  Google Scholar 

  26. M. Reguzzoni, M. Ferrario, S. Zapperi, M.C. Righi, Proc. Natl. Acad. Sci. USA 107, 1311 (2010)

    Article  ADS  Google Scholar 

  27. S.N. Coppersmith, D.S. Fisher, B.I. Halperin, P.A. Lee, W.F. Brinkman, Phys. Rev. Lett. 46, 549 (1981)

    Article  ADS  Google Scholar 

  28. P. Bak, Rep. Prog. Phys. 45, 587 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Patrykiejew, S. Sokołowski, T. Zientarski, K. Binder, Surf. Sci. 421, 308 (1999)

    Article  ADS  Google Scholar 

  30. K. Mangold, P. Leiderer, C. Bechinger, Phys. Rev. Lett. 90, 158302 (2003)

    Article  ADS  Google Scholar 

  31. M. Cieplak, E.D. Smith, M.O. Robbins, Science 265, 1209 (1994)

    Article  ADS  Google Scholar 

  32. T. Coffey, J. Krim, Phys. Rev. Lett. 95, 076101 (2005)

    Google Scholar 

  33. M. Tinkham, Introduction to Superconductivity (McGraw Hill, New York, 1996)

    Google Scholar 

  34. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  35. T. Bohlein, C. Bechinger, Phys. Rev. Lett. 109, 058301 (2012)

    Article  ADS  Google Scholar 

  36. A. Vanossi, N. Manini, G. Divitini, G.E. Santoro, E. Tosatti, Phys. Rev. Lett. 97, 056101 (2006)

    Article  ADS  Google Scholar 

  37. M. Cesaratto, N. Manini, A. Vanossi, E. Tosatti, G.E. Santoro, Surf. Sci. 601, 3682 (2007)

    Article  ADS  Google Scholar 

  38. A. Vanossi, N. Manini, F. Caruso, G.E. Santoro, E. Tosatti, Phys. Rev. Lett. 99, 206101 (2007)

    Article  ADS  Google Scholar 

  39. I.E. Castelli, R. Capozza, A. Vanossi, G.E. Santoro, N. Manini, E. Tosatti, J. Chem. Phys. 131, 174711 (2009)

    Article  ADS  Google Scholar 

  40. A.D. Novaco, J.P. McTague, Phys. Rev. Lett. 38, 1286 (1977)

    Article  ADS  Google Scholar 

  41. G.V. Uîmin, L.N. Shur, JETP Lett. 28, 18 (1979)

    Google Scholar 

  42. J. Krim, D.H. Solina, R. Chiarello, Phys. Rev. Lett. 66, 181 (1991)

    Article  ADS  Google Scholar 

  43. M.S. Tomassone, J.B. Sokoloff, A. Widom, J. Krim, Phys. Rev. Lett. 79, 4798 (1997)

    Article  ADS  Google Scholar 

  44. C. Drummond, J. Israelachvili, Phys. Rev. E 63, 041506 (2001)

    Article  ADS  Google Scholar 

  45. S.M. Rubinstein, G. Cohen, J. Fineberg, Nature (London) 430, 1005 (2004)

    Article  ADS  Google Scholar 

  46. S.M. Rubinstein, G. Cohen, J. Fineberg, Phys. Rev. Lett. 96, 256103 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge helpful discussions with C. Bechinger, T. Bohlein, O.M. Braun, C. Dellago, M. Invernizzi, D. Mandelli, C. Reichhardt, G.E. Roat, and G.E. Santoro. This work is supported in part by COST Action MP1303, the Italian Ministry of University and Research, the Swiss National Science Foundation Sinergia CRSII2_136287, and the ERC Advanced Grant No. 320796-MODPHYSFRICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vanossi .

Editor information

Editors and Affiliations

Appendix: Static Configurations

Appendix: Static Configurations

Fig. 19.9
figure 9

The static initial configuration for \(U_0=0.1\), \(F=0\), \(a_\mathrm{las}=0.95\), i.e. \(\rho =0.95\) (antisoliton incommensurate pattern: AI). Darker dots indicate colloidal particles sitting at a repulsive point of the corrugation landscape, namely with \(W({\mathbf r})>-U_0/2\). This configuration is essentially unique, since an extremely similar configuration is retrieved at the end of a long relaxation, regardless of the initial condition. The central portion of this figure is represented in Fig. 19.3a

Fig. 19.10
figure 10

The static initial configuration for \(U_0=0.1\), \(F=0\), \(a_\mathrm{las}=1.00\), i.e. \(\rho =1.02\) (commensurate: CO). Darker dots  have the same significance as in Fig. 19.9. At this nearly matched value \(\rho =1\), this configuration is the lowest-energy state, on the blue-circle curve in the phase diagram of Fig. 19.7. The metastable high-energy state of the red-square curve in Fig. 19.7 is qualitatively similar to the one depicted in the subsequent Fig. 19.11

Fig. 19.11
figure 11

The static initial configuration for \(U_0=0.1\), \(F=0\), \(a_\mathrm{las}=1.05\), i.e. \(\rho =1.05\) (soliton incommensurate pattern: SI). Darker dots have the same significance as in Fig. 19.9. At this comparably large mismatch value \(\rho =1.05\), this configuration is the lowest-energy state, on the red-square curve in the phase diagram reported in Fig. 19.7. The metastable high-energy state of the blue-circle curve looks very similar to the one represented in the previous Fig. 19.10

Fig. 19.12
figure 12

A typical initial configuration for a stronger (\(U_0=0.5\)) corrugation potential. The other parameters (\(F=0\), \(a_\mathrm{las}=0.95\), AI) and the color notation are the same as in Fig. 19.9. By comparison with the weaker corrugation, here antisolitons are much narrower, intersecting and isolating well-faceted in-registry regions. Note that the pattern formed by the center of the antisoliton lines is the same in both figures

Fig. 19.13
figure 13

The effects of thermal fluctuations. A typical \(F=0\) snapshot of a Langevin simulation at \(k_\mathrm{B} T=0.04\), corresponding to room temperature in model units. The parameters (\(U_0=0.1\), \(F=0\), \(a_\mathrm{las}=0.95\), AI) and the color notation are the same as in Fig. 19.9. By comparison with the \(T=0\) configuration, the antisoliton pattern is only marginally affected by thermal noise. A small thermal expansion is responsible for a slight reduction of \(\rho \), producing a visibly denser antisolitonic pattern than at \(T=0\)

Figures 19.9, 19.10, 19.11 display three overall views of the static fully relaxed \(F=0\) configurations for different values of \(a_\mathrm{lub}\) (or, equivalently, of \(\rho \)). These pictures represent the lowest-energy configurations of the three regions in the phase diagram—Fig. 19.7. Soliton/antisoliton patterns are highlighted by coloring colloids differently for different positions relative to the potential profile of Fig. 19.2: dark, bolder colloids occupy locally unfavorable repulsive regions for the corrugation profile \(W\). Figure 19.12 illustrates the antisoliton pattern for a larger amplitude of the corrugation \(U_0\), to be compared with Fig. 19.9 obtained with smaller corrugation. Note that the antisoliton lines are narrower in Fig. 19.12, but they form the same pattern as in Fig. 19.9.

Finally, Fig. 19.13 is to be compared with Fig. 19.9 to appreciate the effect of the random thermal motions characteristic of \(300\) K: (i) Brownian fluctuations smear the boundaries between in-registry and antisolitonic regions and (ii) a small thermal expansion is marked by a reduction in \(\rho \), and therefore in the separation between antisolitons.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vanossi, A., Manini, N., Tosatti, E. (2015). Driven Colloidal Monolayers: Static and Dynamic Friction. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_19

Download citation

Publish with us

Policies and ethics