Skip to main content

Effect of Capillary Condensation on Nanoscale Friction

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

Abstract

While formation of capillary bridges significantly contributes to the adhesion and friction at micro- and nanoscales, many key aspects of dynamics of capillary condensation and its effect on friction forces are still not well understood. Here, by analytical model and numerical simulations, we address the origin of reduction of friction force with velocity and increase of friction with temperature, which have been experimentally observed under humid ambient conditions. We demonstrate that adding a low amplitude oscillatory component to the pulling force, when applied at the right frequency, can significantly suppress condensation of capillary bridges and thereby reduce friction. The results obtained show that frictional measurements performed in this mode can provide significant information on the mechanism of frictional aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  ADS  Google Scholar 

  2. V. Bormuth, V. Varga, J. Howard, E. Schaffer, Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules. Science 325, 870–873 (2009)

    Article  ADS  Google Scholar 

  3. C.H. Scholz, Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Article  ADS  Google Scholar 

  4. R. Budakian, S.J. Putterman, Correlation between charge transfer and stick-slip friction at a metalinsulator interface. Phys. Rev. Lett. 85, 1000 (2000)

    Article  ADS  Google Scholar 

  5. E. Gerde, M. Marder, Friction and fracture. Nature (London) 413, 285 (2001)

    Article  ADS  Google Scholar 

  6. A.E. Filippov, J. Klafter, M. Urbakh, Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)

    Article  ADS  Google Scholar 

  7. S.M. Rubinstein, G. Cohen, J. Fineberg, Detachment fronts and the onset of dynamic friction. Nature 430, 1005 (2004)

    Article  ADS  Google Scholar 

  8. A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529 (2013)

    Article  ADS  Google Scholar 

  9. Y. Mo, K.T. Turner, I. Szlufarska, Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  ADS  Google Scholar 

  10. B. Gotsmann, M.A. Lantz, Quantized thermal transport across contacts of rough surfaces. Nature Mater. 12, 59–65 (2012)

    Article  ADS  Google Scholar 

  11. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)

    Book  Google Scholar 

  12. O.M. Braun, M. Peyrard, Modeling friction on a mesoscale: master equation for the earthquakelike model. Phys. Rev. Lett. 100, 125501 (2008)

    Article  ADS  Google Scholar 

  13. O.M. Braun, I. Barel, M. Urbakh, Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  ADS  Google Scholar 

  14. I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  ADS  Google Scholar 

  15. Y. Liu, I. Szlufarska, Chemical origins of frictional aging. Phys. Rev. Lett. 109, 186102 (2012)

    Article  ADS  Google Scholar 

  16. R. Capozza, M. Urbakh, Static friction and the dynamics of interfacial rupture. Phys. Rev. B 86, 085430 (2012)

    Article  ADS  Google Scholar 

  17. T.C. Halsey, A.J. Levine, How sandcastles fall. Phys. Rev. Lett. 80, 3141 (1998)

    Article  ADS  Google Scholar 

  18. S.N. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, Dordrecht, 2001)

    Google Scholar 

  19. B. Bhushan, Handbook of Nanotribology (Springer, New York, 2007)

    Google Scholar 

  20. L. Bocquet, E. Charlaix, S. Ciliberto, J. Crassous, Moisture-induced ageing in Granular media and the kinetics of capillary condensation. Nature (London) 396, 735 (1998)

    Google Scholar 

  21. E. Riedo, F. Le’vy, H. Brune, Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. 88, 185505 (2002)

    Article  ADS  Google Scholar 

  22. R. Szoszkiewicz, E. Riedo, Nucleation time of nanoscalewater bridges. Phys. Rev. Lett. 95, 135502 (2005)

    Article  ADS  Google Scholar 

  23. C. Greiner, J.R. Felts, Z. Dai, W.P. King, R.W. Carpick, Local nanoscale heating modulates single-asperity friction. Nano Lett. 10, 4640 (2010)

    Google Scholar 

  24. O. Noel, P.-E. Mazeran, H. Nasrallah, Sliding velocity dependence of adhesion in a nanometer-sized contact. Phys. Rev. Lett. 108, 015503 (2012)

    Article  ADS  Google Scholar 

  25. L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436 (2002)

    Article  ADS  Google Scholar 

  26. Y. Sang, M. Dube, M. Grant, Thermal effects on atomic friction. Phys. Rev. Lett. 87, 17430 (2001)

    Article  Google Scholar 

  27. O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Dynamic force spectroscopy: a Fokker\(-\)Planck approach. Chem. Phys. Lett. 352, 499 (2002)

    Article  ADS  Google Scholar 

  28. I. Szlufarska, M. Chandross, R.W. Carpick, Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)

    Article  ADS  Google Scholar 

  29. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Guntherodt, Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  ADS  Google Scholar 

  30. L. Jansen, H. Holscher, H. Fuchs, A. Schirmeisen, Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104, 256101 (2010)

    Article  ADS  Google Scholar 

  31. M. Heuberger, C. Drummond, J.N. Israelachvili, Coupling of normal and transverse motion during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)

    Article  Google Scholar 

  32. A. Socoliuc et al., Atomic-scale control of friction by actuation of nanometer- sized contacts. Science 313, 207 (2006)

    Article  ADS  Google Scholar 

  33. S. Jeon, T. Thundat, Y. Braiman, Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88, 214102 (2006)

    Article  ADS  Google Scholar 

  34. A. Cochard, L. Bureau, T. Baumberger, Stabilization of frictional sliding by normal load modulation: a bifurcation analysis. Trans. ASME 70, 220 (2003)

    Article  MATH  Google Scholar 

  35. V.L. Popov, J. Starcevic, A.E. Filippov, Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry fiction. Tribol. Lett. 39, 25 (2010)

    Article  Google Scholar 

  36. R. Capozza, S.M. Rubinstein, I. Barel, M. Urbakh, J. Fineberg, Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)

    Article  ADS  Google Scholar 

  37. M.G. Rozman, M. Urbakh, J. Klafter, Controlling chaotic frictional forces. Phys. Rev. E 57, 7340 (1998)

    Article  ADS  Google Scholar 

  38. Z. Tshiprut, A.E. Filippov, M. Urbakh, Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)

    Article  ADS  Google Scholar 

  39. J.P. Gao, W.D. Luedtke, U. Landman, Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033–5037 (1998)

    Article  Google Scholar 

  40. R. Capozza, A. Vanossi, A. Vezzani, S. Zapperi, Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)

    Article  ADS  Google Scholar 

  41. Q. Li, T.E. Tullis, D. Golldsby, R.W. Carpick, On the origins of rate and state friction: frictional ageing from interfacial bonding. Nature (London) 480, 233 (2011)

    Google Scholar 

  42. I. Barel, A.E. Filippov, M. Urbakh, Formation and rupture of capillary bridges in atomic scale friction. J. Chem. Phys. 137, 164706 (2012)

    Article  ADS  Google Scholar 

  43. H. Choe, M.-H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm, W. Jhe, Formation, manipulation, and elasticity measurement of a nanometric column of water molecules. Phys. Rev. Lett. 95, 187801 (2005)

    Article  ADS  Google Scholar 

  44. M. He, A.S. Blum, D.E. Aston, C. Buenviaje, R.M. Overney, R. Luginbuhl, Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355 (2001)

    Article  ADS  Google Scholar 

  45. J. Crassous, M. Ciccotti, E. Charlaix, Capillary, force between wetted nanometric contacts and its application to atomic force microscopy. Langmuir 27, 3468 (2011)

    Google Scholar 

  46. H.-J. Butt, Capillary forces: influence of roughness and heterogeneity. Langmuir 24, 4715 (2008)

    Article  Google Scholar 

  47. I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Temperature dependence of friction at the nanoscale: when the unexpected turns normal. Trib. Lett. 39, 311 (2010)

    Article  Google Scholar 

  48. I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys. Rev. B 84, 115417 (2011)

    Article  ADS  Google Scholar 

  49. J.H. Dieterich, Modeling of rock friction: 1. experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979)

    Article  ADS  Google Scholar 

  50. V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications (Springer, Berlin, 2010)

    Book  Google Scholar 

  51. K.M. Frye, C. Marone, Effect of humidity on granular friction at room temperature. J. Geophys. 107, 2309 (2002)

    Article  ADS  Google Scholar 

  52. R. Capozza, I. Barel, M. Urbakh, Probing and tuning frictional aging at the Nanoscale. Sci. Rep. 3, 1896 (2013)

    Article  ADS  Google Scholar 

  53. X.H. Chen, A.P. Dempster, J.S. Liu, Weighted finite population sampling to maximize entropy. Biometrika 81(3), 457 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We grateful to R. W. Carpick, A.E. Filippov, C. Greiner, P.-E. Mazeran and O. Noel for helpful discussions. R.C. acknowledges support from the Swiss National Science Foundation SINERGIA Project CRSII2 136287\(\backslash \)1. The work was supported by DIP (German-Israeli Project Cooperation Program) and the Israel Science Foundation (1109/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Capozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capozza, R., Barel, I., Urbakh, M. (2015). Effect of Capillary Condensation on Nanoscale Friction. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_15

Download citation

Publish with us

Policies and ethics