Fejér Polynomials and Chaos

  • Dmitriy Dmitrishin
  • Anna Khamitova
  • Alexander M. Stokolos
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 108)


We show that given any μ > 1, an equilibrium x of a dynamic system
$$\displaystyle{ x_{n+1} = f(x_{n}) }$$
can be robustly stabilized by a nonlinear control
$$\displaystyle{ u = -\sum _{j=1}^{N-1}\varepsilon _{ j}\left (f\left (x_{n-j+1}\right ) - f\left (x_{n-j}\right )\right ),\,\vert \varepsilon _{j}\vert < 1,\;j = 1,\ldots,N - 1, }$$
for f (x) ∈ (−μ, 1). The magnitude of the minimal value N is of order \(\sqrt{\mu }.\) The optimal explicit strength coefficients are found using extremal nonnegative Fejér polynomials. The case of a cycle as well as numeric examples and applications to mathematical biology are considered.


Chaotic Attractor Robust Stability Population Development Unstable Periodic Orbit Strong Numeric Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amann, A., Scholl, E., Just, W.: Some basic remarks on eigenmode expansions of time-delay dynamics. Physica A 373, 191 (2007)CrossRefGoogle Scholar
  2. 2.
    Bielawski, S., Derozier, D., Glorieux, P.: Controlling unstable periodic orbits by a delayed continuous feedback. Phys. Rev. E 49, R971 (1994)CrossRefGoogle Scholar
  3. 3.
    Bleich, M.E., Socolar, J.E.S.: Stability of periodic orbits controlled by time-delay feedback. Phys. Lett. A 210, 87 (1996)CrossRefGoogle Scholar
  4. 4.
    Borwein, J., Bailey, D.: Mathematics by Experiment: Plausible Reasoning in the 21st Century. A K Peters, Wellesley, MA (2003)Google Scholar
  5. 5.
    Dimitrov, D.: Extremal positive trigonometric polynomials. In: Bojoanov, B. (ed.) Approximation Theory: A Volume Dedicated to Blagovest Sendov. DARBA, Sofia (2002)Google Scholar
  6. 6.
    Dahms, T., Hovel, P., Scholl, E.: Control of unstable steady states by extended time-delayed feedback. Phys. Rev. E 76, 056201 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dmitrishin, D., Khamitova, A.: Methods of harmonic analysis in nonlinear dynamics. Comptes Rendus Mathematique 351(9–10), 367–370 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fejér, L.: Ueber trigonometrische polynome. J. Reine Angew. Math. 146, 53–82 (1915)zbMATHGoogle Scholar
  9. 9.
    Fejér, L.: Sur les fonctions bornées et intégrables. C. R. Acad. Sci. Paris 131, 984–987 (1900)Google Scholar
  10. 10.
    Fejér, L.: Sur les polynomes trigonométriques. C. R. Acad. Sci. Paris 157, 571–574 (1913)zbMATHGoogle Scholar
  11. 11.
    Fiedler, B., Flunkert, V., Georgi, M., Hövel, P., Schöll, E.: Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett. 98, 114101 (2007)CrossRefGoogle Scholar
  12. 12.
    Fiedler, B., Yanchuk, S., Flunkert, V., Hovel, P., Wunsche, H.J., Scholl, E.: Delay stabilization of rotating waves near fold bifurcation and application toall-optical control of a semiconductor laser. Phys. Rev. E 77, 066207 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gauthier, D.J.: Resource letter: Controlling chaos. Am. J. Phys. 71, 750 (2003)CrossRefGoogle Scholar
  14. 14.
    Hovel, P., Socolar, J.E.S.: Stability domains for time-delay feedback control with latency. Phys. Rev. E 68, 036206 (2003)CrossRefGoogle Scholar
  15. 15.
    Hovel, P., Scholl, E.: Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E 72, 046203 (2005)CrossRefGoogle Scholar
  16. 16.
    Just, W., Benner, H., Scholl, E.: Control of chaos by time-delayed feedback: a survey of theoretical and experimental aspects. In: Kramer, B. (ed.), Advances in Solid State Phyics, vol. 43, pp. 589–603. Springer, Berlin (2003)CrossRefGoogle Scholar
  17. 17.
    Just, W., Bernard, T., Ostheimer, M., Reibold, E., Benner, H.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78, 203 (1997).CrossRefGoogle Scholar
  18. 18.
    Just, W., Fiedler, B., Flunkert, V., Georgi, M., Hovel, A., Scholl, E.: Beyond odd number limitation: a bifurcation analysis of time-delayed feedback control. Phys. Rev. E 76, 026210 (2007)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, T.-Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Morgul, Ö.: Further stability results for a generalization of delayed feedback control. Nonlinear Dyn. 70(2), 1255–1262 (2012)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Murray, I.D.: Mathematical Biology: An Introduction, 3rd edn., Springer, New York (2002)Google Scholar
  22. 22.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Polya, G., Szegö, G.: Problems and Theorems in Analysis II: Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Springer, Berlin (1998)zbMATHGoogle Scholar
  24. 24.
    Polyak, B.T.: Stabilizing chaos with predictive control. Autom. Rem. Control. 66(11), 1791–1804 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pyragas, K.: Analytical properties and optimization of time-delayed feedback control. Phys. Rev. E 66, 26207 (2002)CrossRefGoogle Scholar
  26. 26.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170A, 421–428 (1992)CrossRefGoogle Scholar
  27. 27.
    Pyragas, K.: Delayed feedback control of chaos. Phil. Trans. R. Soc. A 364(1846), 2309–2334 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Scholl, E., Hovel, P., Flunkert, V., Dahlem, M.A., Nakajima, H.: On analytical properties of delayed feedback control of chaos. Phys. Lett. A 232, 207 (1997)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Scholl, E., Schuster, H.G. (eds.), Handbook of Chaos Control. Wiley, Weinheim (2008), second completely revised and enlarged editionGoogle Scholar
  30. 30.
    Sharkovsky, A.M.: Co-existence of cycles of a continuous mapping of a line onto itself. Ukrainian Math. Z. 16, 61–71 (1964)Google Scholar
  31. 31.
    Socolar, J.E.S., Sukow, D.W., Gauthier, D.J.: Stabilizing unstable periodic orbits in fast dynamical systems. Phys. Rev. E 50, 3245 (1994)CrossRefGoogle Scholar
  32. 32.
    Socolar, J.E.S., Gauthier, D.J.: Analysis and comparison of multiple-delay schemes for controlling unstable fixed points of discrete maps. Phys. Rev. E 57, 6589 (1998)CrossRefGoogle Scholar
  33. 33.
    Ushio, T., Yamamoto, S.: Prediction-based control of chaos. Phys. Lett. A 264, 30–35 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Ushio, T., Yamamoto, S.: Prediction-based control in chaotic discrete-time systems decision and control, 1999. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 2, pp. 2053–2054 (1999)Google Scholar
  35. 35.
    Ushio, T.: Limitation of delayed feedback control in nonlinear discrete-time systems. IEEE Trans. Circ. Syst. 43 815–816 (1996)CrossRefGoogle Scholar
  36. 36.
    Vieira, D.S.M., Lichtenberg, A.J.: Controlling chaos using nonlinear feedback with delay. Phys. Rev. E 54, 1200–1207 (1996)CrossRefGoogle Scholar
  37. 37.
    Yamamoto, S., Hino, T., Ushio, T.: Dynamic delayed feedback controllers for chaotic discrete-time systems. IEEE Trans. Circ. Syst. I 48(6), 785–789 (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yanchuk, S., Wolfrum, M., Hovel, P., Scholl, E.: Control of unstable steady states by long delay feedback. Phys. Rev. E 74, 026201 (2006)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Zhu, J., Tian, Y.-P.: Necessary and sufficient condition for stabiilizability of discrete-time systems via delayed feedback control. Phys. Lett. A 343, 95–107 (2005)CrossRefzbMATHGoogle Scholar
  40. 40.
    Zubov, V.I.: Vibrations in non-linear and controlled systems. Gos. Sojuz. Izdat. Sudostroitel. Promyshl. Leningrad, 631 pp, MR0155073 (1962)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dmitriy Dmitrishin
    • 1
  • Anna Khamitova
    • 2
  • Alexander M. Stokolos
    • 2
  1. 1.Odessa National Polytechnic UniversityOdessaUkraine
  2. 2.Georgia Southern UniversityStatesboroUSA

Personalised recommendations