Skip to main content

Towards a Unified Theory of Sobolev Inequalities

  • Conference paper
  • First Online:
Special Functions, Partial Differential Equations, and Harmonic Analysis

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 108))

Summary

We discuss our work on pointwise inequalities for the gradient which are connected with the isoperimetric profile associated with a given geometry. We show how they can be used to unify certain aspects of the theory of Sobolev inequalities. In particular, we discuss our recent papers on fractional order inequalities, Coulhon type inequalities, transference and dimensionless inequalities and our forthcoming work on sharp higher order Sobolev inequalities that can be obtained by iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that if f n  ≥ 0, and f n ↑ f, then \(\left \Vert f_{n}\right \Vert _{X} \uparrow \left \Vert f\right \Vert _{X}\) (i.e., Fatou’s Lemma holds in the X norm).

  2. 2.

    actually using the available cancellation, we have \(2f(y) =\int _{ -\infty }^{y}f^{{\prime}}(s)ds -\int _{y}^{\infty }f^{{\prime}}(s)ds\), therefore the constant of the embedding can be improved,

    $$\displaystyle{\left \Vert f\right \Vert _{\infty }\leq \frac{1} {2}\left \Vert f^{{\prime}}\right \Vert _{ 1}.}$$
  3. 3.

    For a detailed presentation of Maz’ya’s remarkable early work we refer to [51].

  4. 4.

    This is a somewhat disappointing turn of events for the developers of general abstract theories studying limiting inequalities (e.g., [56]) but our current understanding of Sobolev inequalities shows that: (a) Sobolev inequalities self-improve (cf. [5, 48, 79, 86]) and (b) the extrapolations of Sobolev inequalities take the form: “one inequality” implies a family of inequalities and in some cases “one inequality implies all”! (cf. [5, 29, 79]). We also refer to the forthcoming [84] for a connection with extrapolation of Sobolev inequalities à la Rubio de Francia.

  5. 5.

    For a detailed discussion on equivalences between different Lorentz *norms* we refer to [11, 57, 73].

  6. 6.

    The proof to deal with the case p = 1 is slightly different and hinges on a variant of (4), namely (cf. [86])

    $$\displaystyle{\int _{0}^{t}(f^{{\ast}{\ast}}(s) - f^{{\ast}}(s))s^{1/n}\frac{ds} {s} \leq c\int _{0}^{t}\left \vert \nabla f\right \vert ^{{\ast}}(s)ds.}$$
  7. 7.

    Actually (6) also makes sense, and gives sharp results, when p > n (cf. [80, Chapter 9]).

  8. 8.

    The isoperimetric profile was introduced by Maz’ya in the sixties and further developed by him in a number of publications (cf. [88] and the references therein). Independently, this useful tool was developed in parallel by geometers (cf. [12] and the references therein) and probabilists (cf. [67] and the references therein), and as we shall see plays an important role in our work formulating Sobolev pointwise inequalities on rearrangements.

  9. 9.

    In the general metric case it becomes the co-area inequality (cf. [18]).

  10. 10.

    In this case we have

    $$\displaystyle\begin{array}{rcl} \int _{0}^{\infty }I\left (\gamma (\{\left \vert f\right \vert > t\})\right )dt& \succeq & \int _{ 0}^{1/2}f^{{\ast}}(t)d\left (t\left (\log \frac{1} {t} \right )^{1/2}\right ) {}\\ & & \simeq \int _{0}^{1/2}f^{{\ast}}(t)\left (\log \frac{1} {t} \right )^{1/2}dt. {}\\ \end{array}$$
  11. 11.

    Here again we have to allow for *generalized* Lorentz spaces since the Gaussian profile although concave is not increasing. Indeed, I(t) is symmetric about 1∕2. Also note that the inequality

    $$\displaystyle{\int _{0}^{\infty }I\left (\gamma (\{\left \vert f\right \vert > t\})\right )dt \leq \left \|\nabla f\right \|_{ L^{1}(R^{n},\gamma )}}$$

    holds for functions f that do not vanish at the boundary. For example, for f = 1, the right hand is zero and

    $$\displaystyle\begin{array}{rcl} \int _{0}^{\infty }I\left (\gamma (\{\left \vert f\right \vert > t\})\right )dt& =& \int _{ 0}^{1}I\left (1)\right )dt {}\\ & =& \int _{0}^{1}0dt {}\\ & =& 0. {}\\ \end{array}$$
  12. 12.

    It is well known that the sets that realize the isoperimetric inequality are always hyperspaces: i.e., all but one of the variables are free.

  13. 13.

    For all Lipschitz function f on Ω, the modulus of the gradient is defined by

    $$\displaystyle{\vert \nabla f(x)\vert =\limsup _{d(x,y)\rightarrow 0}\frac{\vert f(x) - f(y)\vert } {d(x,y)}.}$$
  14. 14.

    The strong connection between the co-area formula and Sobolev embeddings had already been emphasized by Maz’ya in his pioneering fundamental work in the early sixties (cf. [88]).

  15. 15.

    See [52]. Using an approximation argument developed by E. Milman [92, Remark 3.3] it is possible to prove the main inequalities of this paper without this assumption (cf. [79] and the forthcoming [85]).

  16. 16.

    Under the assumption that f is Lip the calculations below can be justified (cf. [69, 75, 78])

  17. 17.

    In particular we require that for \(f \in Lip_{0}(\varOmega )\) we have \(f^{{\ast}}(\mu (\varOmega )^{-}) = 0\).

  18. 18.

    We refer to E. Milman’s papers for an account of the history of the problem. Emanuel, who belongs to the Milman family of mathematicians that includes David (grandfather), Vitali (father), Pierre (uncle) (cf. [54]), has no direct relation to Mario Milman.

  19. 19.

    An isoperimetric estimator is a continous concave function I: [0, 1] → [0, ], with I(0) = 0, increasing on (0, 1/2), symmetric about the point 1/2, and such that for t ∈ (0, 1∕2), 

    $$\displaystyle{I(t) \geq I_{(\varOmega,d,\mu )}(t).}$$
  20. 20.

    Independently, and in parallel, A. Calderón and his student Oklander defined and studied the K−functional, and real interpolation, e.g. in Oklander’s thesis at the University of Chicago (cf. [98]).

  21. 21.

    In other words we assume that (34) holds for X = L1 (Ω), and with \(\frac{t} {G(t)}\) replacing \(\frac{t} {I_{\varOmega }(t)}.\)

  22. 22.

    The iteration of Sobolev inequalities is not a new idea (cf. [88, Corollary 6.9/1 in page 379 and Theorem 7.6.5 in page 430]), the novelty here, if any, is the iteration of pointwise rearrangement inequalities

References

  1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1999)

    Google Scholar 

  2. Allen, G.D.: Locally Continuous Operators II. Indiana Univ. Math. J. 38, 711–743 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almgren, F., Lieb, E.: Symmetric Decreasing Rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alvino, A., Trombetti, G., Lions, P.L.: On optimization problems with prescribed rearrangements. Nonlinear Anal. 13, 185–220 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  6. Barthe, F.: Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. 10, 393–404 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barthe, F.: Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12, 32–55 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Barthe, P. Cattiaux and C. Roberto, Isoperimetry between exponential and Gaussian, Orlicz hyper-contractivity and isoperimetry, Rev. Mat. Iber. 22 (2006), 993–1067.

    Article  MATH  MathSciNet  Google Scholar 

  9. Barthe, F., Cattiaux, P., Roberto, C.: Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12, 1212–1237 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bastero, J., Milman, M., Ruiz, F.: On the connection between weighted norm inequalities, commutators and real interpolation. preprint, Sem A. Galdeano (1996)

    Google Scholar 

  11. Bastero, J., Milman, M., Ruiz, F.: A note on L(, q) spaces and Sobolev embeddings. Indiana Math. J. 52, 1215–1230 (2003)

    Article  MATH  Google Scholar 

  12. Bayle, V.: Propriétés de concavité du profil isopérimétrique et applications. Ph.D. thesis, Institut Joseph Fourier (2004)

    Google Scholar 

  13. Beckner, W., Persson, M.: On sharp Sobolev embedding and the logarithmic Sobolev inequality. Bull. Lond. Math. Soc. 30, 80–84 (1998)

    Article  Google Scholar 

  14. Bennett, C., DeVore, R., Sharpley, R.: Weak-L and BMO. Ann. Math. 113, 601–611 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  16. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  17. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27, 1903–1921 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bobkov, S.G., Houdré, C.: Some connections between isoperimetric and Sobolev-type inequalities. Mem. Am. Math. Soc. 129 (1997).

    Google Scholar 

  19. Bobkov, S.G., Zegarlinski, B.: Entropy bounds and isoperimetry. Mem. Am. Math. Soc. 176 (2005)

    Google Scholar 

  20. Bobkov, S.G., Zegarlinski, B.: Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya I: Function Spaces, pp 13–79. Springer, New York (2010)

    Chapter  Google Scholar 

  21. Borell, C.: The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337, 663–666 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30, 207–216 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Calderón, A.P.: Spaces between L 1and L and the theorem of Marcinkiewicz. Stud. Math. 26, 273–299 (1966)

    MATH  Google Scholar 

  25. Cianchi, A., Pick, L.: Optimal Gaussian Sobolev embeddings. J. Funct. Anal. 256, 3588–3642 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Coulhon, T.: Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal. 136, 81–113 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Coulhon, T.: Dimensions at infinity for Riemannian manifolds. Potential Anal. 4, 335–344 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Coulhon, T.: Heat kernel and isoperimetry on non-compact Riemmanian manifolds. Contemp. Math. 338, 65–99 (2003)

    Article  MathSciNet  Google Scholar 

  29. Cwikel, M., Jawerth, B., Milman, M.: A note on extrapolation of inequalities, preprint (2010)

    Google Scholar 

  30. Cwikel, M., Pustylnik, E.: Sobolev type embeddings in the limiting case. J. Fourier Anal. Appl. 4, 433–446 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, New York (1987)

    Book  MATH  Google Scholar 

  32. Ditzian, Z., Ivanov, K.G.: Strong converse inequalities. J. D’Analise Math. 61, 61–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ditzian, Z., Lubinsky, D.S.: Jackson and smoothness theorems for Freud weights in L p (0 < p < ). Constr. Approx. 13, 99–152 (1997)

    MATH  MathSciNet  Google Scholar 

  34. Edmunds, D.E., Evans, W.D.: Hardy Operators, Function Spaces and Embeddings. Springer, Berlin (2004)

    MATH  Google Scholar 

  35. Ehrhard, A.: Symétrisation dans l’espace de Gauss. Math. Scand. 53, 281–301 (1983)

    MATH  MathSciNet  Google Scholar 

  36. Ehrhard, A.: Sur l’inégalité de Sobolev logarithmique de Gross. In: Séminaire de Probabilités XVII. Lecture Notes in Mathematics, vol. 1059, pp. 194–196. Springer, Heidelberg (1984)

    Google Scholar 

  37. Ehrhard, A.: Inégalités isopérimétriques et intégrales de Dirichlet gaussiennes. Ann. Sci. Ecole. Norm. Sup. 17, 317–332 (1984)

    MATH  MathSciNet  Google Scholar 

  38. Fiorenza, A.: Duality and reflexivity in grand Lebesgue spaces. Collect. Math. 51, 131–148 (2000)

    MATH  MathSciNet  Google Scholar 

  39. Fiorenza, A., Karadzhov, G.E.: Grand and Small Lebesgue Spaces and their analogs. Z. Anal. Anwendungen 23, 657–681 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Fiorenza, A., Krbec, M., Schmeisser, H.J.: An improvement of dimension-free Sobolev imbeddings in r.i. spaces, Journal of Functional Analysis 267, 243–261 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Fontana, L., Morpurgo, C.: Optimal limiting embeddings for Δ-reduced Sobolev spaces in L 1. Ann. de l’Inst. Henri Poincaré (C) Non Linear Analysis, 31, 217–230 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés Riemanniennes. Astérisque 163–164, 31–91 (1988)

    Google Scholar 

  43. Garsia, A.M.: Combinatorial inequalities and smoothness of functions. Bull. Am. Math. Soc. 82, 157–170 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  44. Garsia, A.M.: A remarkable inequality and the uniform convergence of Fourier series. Indiana Univ. Math. J. 25, 85–102 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  45. Garsia, A., Rodemich, E.: Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier 24, 67–116 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  46. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Pardo, L., Pinkus, A., Suli, E., Todd, M. (eds.) Foundations of Computational Mathematics (FoCM05), Santander, pp. 106–161. Cambridge University Press, Cambridge (2006)

    Chapter  Google Scholar 

  47. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  Google Scholar 

  48. Hajlasz, P.: Sobolev inequalities, truncation method, and John domains. In: Papers in Analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä, Jyväskylä, pp 109–126 (2001)

    Google Scholar 

  49. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 101 pages (2000)

    Google Scholar 

  50. Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math Scand 45, 77–102 (1979)

    MATH  MathSciNet  Google Scholar 

  51. Hedberg, L.I.: On Maz’ya’s work in potential theory and the theory of function spaces. In: The Maz’ya Anniversary Collection, vol. 1, pp. 7–16, Rostock, 1998. Operator Theory: Advances and Applications, vol. 109. Birkhäuser, Basel (1999)

    Google Scholar 

  52. Heinonen, J.: Lectures on Analysis on metric spaces. Lecture Notes. University of Michigan (1996)

    Google Scholar 

  53. Houdre, C., Ledoux, M., Milman, E., Milman, M.: Concentration, functional inequalities and isoperimetry. Contemp. Math. 545 (2011)

    Google Scholar 

  54. http://en.wikipedia.org/wiki/Vitali_Milman

  55. Iwaniec, T., Sbordone, C.: On the integrability of the Jacobian under minimal hypotheses. Arch. Rational Mech. Anal. 119, 129–143 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  56. Jawerth, B., Milman, M.: Extrapolation theory with applications. Mem. Am. Math. Soc. 89, 440 (1991)

    MathSciNet  Google Scholar 

  57. Jawerth, B., Milman, M.: Interpolation of weak type spaces. Math. Z. 201, 509–520 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  58. Johnen, H., Scherer, K.: On the equivalence of the K-functional and moduli of continuity and some applications. In: Constructive Theory of Functions of Several Variables. Lecture Notes in Mathematics, vol. 571, pp. 119–140. Springer, Berlin (1977)

    Google Scholar 

  59. Karadzhov, G.E., Mehmood, Q.: Optimal regularity properties of the generalized Sobolev spaces. J. Funct. Spaces Appl. 761648, p 10 (2013)

    MathSciNet  Google Scholar 

  60. Karadzhov, G.E., Milman, M.: Extrapolation theory: new results and applications. J. Approx. Theory 133, 38–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. Kesavan, S.: Symmetrization and Applications. World Scientific, Hackensack (2006)

    MATH  Google Scholar 

  62. Kolyada, V.I. (1989) Rearrangements of functions and embedding theorems. Uspekhi Mat. Nauk 44, 61–95 (1989); transl. Russ. Math. Surv. 44, 73–117 (1989)

    Google Scholar 

  63. Krbec, M., Schmeisser, H.J.: On dimension-free Sobolev imbeddings I. J. Math. Anal. Appl. 387, 114–125 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. Krbec, M., Schmeisser, H.J.: On dimension-free Sobolev imbeddings II. Rev. Mat. Complutense 25, 247–265 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  65. Ledoux, M.: Isoperimetry and gaussian analysis. Ecole d’Eté de Probabilités de Saint-Flour 1994. Springer Lecture Notes, vol. 1648, pp 165–294. Springer, Heidelberg (1996)

    Google Scholar 

  66. Ledoux, M.: Isopérimétrie et inégalitées de Sobolev logarithmiques gaussiennes. C. R. Acad. Sci. Paris Ser. I Math. 306, 79–92 (1988)

    MATH  MathSciNet  Google Scholar 

  67. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    Google Scholar 

  68. Ledoux, M.: From concentration to isoperimetry: Semigroup proofs. Contemp. Math. 545, 155–166 (2011)

    Article  MathSciNet  Google Scholar 

  69. Leoni, G.: A First Course in Sobolev Spaces. Graduate Studies in Mathematics, vol. 105. American Mathematical Society, New York (2009)

    Google Scholar 

  70. Malý, J., Pick, L.: An elementary proof of Sharp Sobolev embeddings. Proc. Am. Math. Soc. 130, 555–563 (2002)

    Article  MATH  Google Scholar 

  71. Martín, J., Milman, M.: Symmetrization inequalities and Sobolev embeddings. Proc. Am. Math. Soc. 134, 2335–2347 (2006)

    Article  MATH  Google Scholar 

  72. Martín, J., Milman, M.: Higher-order symmetrization inequalities and applications. J. Math. Anal. Appl. 330, 91–113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  73. Martin, J., Milman, M.: A note on Sobolev inequalities and limits of Lorentz spaces. Contemp. Math. 445, 237–245 (2007)

    Article  MathSciNet  Google Scholar 

  74. Martin, J., Milman, M.: Isoperimetry and Symmetrization for Logarithmic Sobolev inequalities. J. Funct. Anal. 256, 149–178 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  75. Martin, J., Milman, M.: Addendum to Isoperimetry and Symmetrization for Logarithmic Sobolev inequalities. arXiv:0901.1839

    Google Scholar 

  76. Martin, J., Milman, M.: Isoperimetry and Symmetrization for Sobolev spaces on metric spaces. Comptes Rendus Math. 347, 627–630 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  77. Martín, J., Milman, M.: Isoperimetric Hardy type and Poincaré inequalities on metric spaces. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya I. Function Spaces. International Mathematical Series, vol. 11, pp. 285–298. Springer, New York (2010)

    Google Scholar 

  78. Martin, J., Milman, M.: Pointwise symmetrization inequalities for Sobolev functions and applications. Adv. Math. 225, 121–199 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  79. Martin, J., Milman, M.: Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces. Contemp. Math. 545, 167–193 (2011)

    Article  MathSciNet  Google Scholar 

  80. Martin, J., Milman, M.: Fractional Sobolev inequalities: symmetrization, isoperimetry and interpolation, to appear in Astérisque (arXiv:1205.1584)

    Google Scholar 

  81. Martin, J., Milman, M.: A note on Coulhon type inequalities, to appear in Proc. Am. Math. Soc. (arXiv:1206.1584)

    Google Scholar 

  82. Martin, J., Milman, M.: Integral isoperimetric transference and dimensionless Sobolev inequalities, to appear in Revista Matemática Complutense (arXiv:1309.1980)

    Google Scholar 

  83. Martin, J., Milman, M.: A note on iterated Sobolev inequalities involving the isoperimetric profile, preprint

    Google Scholar 

  84. Martin, J., Milman, M.: On the Calderón-Maz’ya-Rubio de Francia extrapolation principle, preprint (2013)

    Google Scholar 

  85. Martin, J., Milman, M.: Symmetrization methods in the theory of Sobolev inequalities. Lecture Notes, in preparation

    Google Scholar 

  86. Martin, J., Milman, M., Pustylnik, E.: Sobolev inequalities: symmetrization and self improvement via truncation. J. Funct. Anal. 252, 677–695 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  87. Mastylo, M.: The modulus of smoothness in metric spaces and related problems. Potential Anal. 35, 301–328 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  88. Maz’ya, V.G.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342. Springer, Heidelberg (2011)

    Google Scholar 

  89. Maz’ya, V.G.: The p-conductivity and theorems on imbedding certain functional spaces into a C-space (Russian), Dokl. Akad. Nauk SSSR 140, 299–302 (1961) (English translation: in Soviet Math. Dokl. 3 (1962)

    Google Scholar 

  90. Milman, E.: Concentration and isoperimetry are equivalent assuming curvature lower bound. C. R. Math. Acad. Sci. Paris 347, 73–76 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  91. Milman, E.: On the role of convexity in isoperimetry, spectral-gap and concentration. Invent. Math. 177, 1–43 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  92. Milman, E.: On the role of convexity in functional and isoperimetric inequalities. Proc. Lond. Math. Soc. Proc. 999, 32–66 (2009)

    Article  MathSciNet  Google Scholar 

  93. Milman, E.: Isoperimetric and concentration inequalities - equivalence under curvature lower bound. Duke Math. J. 154, 207–239 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  94. Milman, E.: A converse to the Maz’ya inequality for capacities under curvature lower bound. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya I: Function Spaces, pp. 321–348. Springer, New York (2010)

    Chapter  Google Scholar 

  95. Milman, E.: Isoperimetric bounds on convex manifolds. Contemp. Math 545, 195–208 (2011)

    Article  MathSciNet  Google Scholar 

  96. Milman, M.: Local operators vs Lorentz-Marcinkiewicz spaces. Interpolation Spaces and Related Topics (Haifa, 1990). Israel Mathematical Conference Proceedings, vol. 5, pp. 151–157 (1992)

    MathSciNet  Google Scholar 

  97. Milman, M., Pustylnik, E.: On sharp higher order Sobolev embeddings. Commun. Contemp. Math. 6, 495–511 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  98. Oklander, E.: Interpolacion, espacios de Lorentz y teorema de Marcinkiewicz. In: Cursos y Seminarios 20, Univ. Buenos Aires (1965) [See also Oklander, E.: On interpolation of Banach spaces, Thesis, Univ. Chicago (1963)]

    Google Scholar 

  99. O’Neil, R.: Convolution operators and L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  100. Pérez Lázaro, F.J.: A note on extreme cases of Sobolev embeddings. J. Math. Anal. Appl. 320, 973–982 (2006)

    Article  MathSciNet  Google Scholar 

  101. Pick, L., Kufner, A., John, O., Fucik, S.: Function Spaces, vol. 1. Walter de Gruyter & Co, Berlin (2012)

    Book  Google Scholar 

  102. Pisier, G.: Factorization of operators through L p∞ or L p1 and non-commutative generalizations. Math. Ann. 276, 105–136 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  103. Pustylnik, E.: On compactness of Sobolev embeddings in rearrangement-invariant spaces. Forum Math. 18, 839–852 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  104. Rakotoson, J.M.: Réarrangement relatif. Un instrument d’estimations dans les problèmes aux limites. Mathematics & Applications, vol. 64. Springer, Berlin (2008)

    Google Scholar 

  105. Ros, A.: The isoperimetric problem. In: Global Theory of Minimal Surfaces. Clay Mathematics Proceedings, vol. 2, pp. 175–209. American Mathematical Society, Providence (2005)

    Google Scholar 

  106. Rota, G.C.: Ten Lessons I wish I had been Taught. http://alumni.media.mit.edu/~cahn/life/gian-carlo-rota-10-lessons.html

  107. Saloff-Coste, L.: Aspects of Sobolev Inequalities. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  108. Slavíková, L.: Compactness of higher order Sobolev embeddings, Master Thesis, Charles University (2012)

    Google Scholar 

  109. Sudakov, V.N., Tsirelson, B.S.: Extremal properties of half-spaces for spherically invariant measures. J. Soviet. Math. 9, 918 (1978); translated from Zap. Nauch. Sem. L.O.M.I. 41, 1424 (1974)

    Google Scholar 

  110. Talenti, G.: Inequalities in rearrangement-invariant function spaces. In: Nonlinear Analysis, Function Spaces and Applications, vol. 5, pp. 177–230. Prometheus, Prague (1995) (for a comprehensive bibliography)

    Google Scholar 

  111. Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez B Artic. Ric. Mat. 1(8), 479–500 (1998)

    MATH  MathSciNet  Google Scholar 

  112. Trudinger, N.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  113. Triebel, H.: Tractable embeddings of Besov spaces into Zygmund spaces. Function spaces IX, vol. 92, pp. 361–377. Banach Center, Polish Acad. Sci. Inst. Math., Warsaw (2011)

    Google Scholar 

  114. Triebel, H.: Tractable embeddings, preprint, University of Jena (2012)

    Google Scholar 

  115. Xiao, J., Zhai, Z.: Fractional Sobolev, Moser-Trudinger, Morrey-Sobolev inequalities under Lorentz norms. J. Math. Sci. 166, 357–376 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Milman for a number of useful comments that helped improve the presentation.

The author J. Martín was Partially supported in part by Grants MTM2010-14946, MTM-2010-16232.

The author M. Milman was partially supported by a grant from the Simons Foundation (#207929 to Mario Milman).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Milman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Martín, J., Milman, M. (2014). Towards a Unified Theory of Sobolev Inequalities. In: Georgakis, C., Stokolos, A., Urbina, W. (eds) Special Functions, Partial Differential Equations, and Harmonic Analysis. Springer Proceedings in Mathematics & Statistics, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-319-10545-1_13

Download citation

Publish with us

Policies and ethics