Skip to main content

Benchmarking Graph Databases on the Problem of Community Detection

  • Conference paper
New Trends in Database and Information Systems II


Thanks to the proliferation of Online Social Networks (OSNs) and Linked Data, graph data have been constantly increasing, reaching massive scales and complexity. Thus, tools to store and manage such data efficiently are absolutely essential. To address this problem, various technologies have been employed, such as relational, object and graph databases. In this paper we present a benchmark that evaluates graph databases with a set of workloads, inspired from OSN mining use case scenarios. In addition to standard network operations, the paper focuses on the problem of community detection and we propose the adaptation of the Louvain method on top of graph databases. The paper reports a comprehensive comparative evaluation between three popular graph databases, Titan, OrientDB and Neo4j. Our experimental results show that in the current development status Neo4j is the most efficient graph database for most of the employed workloads, while Titan handles better single insertion operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008)

    Google Scholar 

  2. Giatsoglou, M., Papadopoulos, S., Vakali, A.: Massive graph management for the web and web 2.0. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management 1. SCI, vol. 331, pp. 19–58. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Angles, R., Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: Benchmarking database systems for social network applications. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES 2013, pp. 15:1–15:7. ACM, New York (2013)

    Google Scholar 

  4. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a database benchmark based on the facebook social graph (2013)

    Google Scholar 

  5. Grossniklaus, M., Leone, S., Zäschke, T.: Towards a benchmark for graph data management and processing (2013)

    Google Scholar 

  6. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison of a graph database and a relational database: A data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010, pp. 42:1–42:6. ACM, New York (2010)

    Google Scholar 

  7. Bader, D.A., Feo, J., Gilbert, J., Kepner, J., Koester, D., Loh, E., Madduri, K., Mann, B., Meuse, T., Robinson, E.: HPC scalable graph analysis benchmark (2009)

    Google Scholar 

  8. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S., Martínez-Bazán, N., Larriba-Pey, J.L.: Survey of graph database performance on the hpc scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM 2010. LNCS, vol. 6185, pp. 37–48. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over graph databases. In: 2012 IEEE 28th International Conference on Data Engineering Workshops (ICDEW), pp. 186–189 (April 2012)

    Google Scholar 

  10. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-Pey, J.: A discussion on the design of graph database benchmarks. In: Nambiar, R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In: 2013 International Conference on Social Computing (SocialCom), pp. 708–715 (September 2013)

    Google Scholar 

  12. Dayarathna, M., Suzumura, T.: Xgdbench: A benchmarking platform for graph stores in exascale clouds. In: 2012 IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 363–370 (December 2012)

    Google Scholar 

  13. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social media. Data Mining and Knowledge Discovery 24(3), 515–554 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sotirios Beis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Beis, S., Papadopoulos, S., Kompatsiaris, Y. (2015). Benchmarking Graph Databases on the Problem of Community Detection. In: Bassiliades, N., et al. New Trends in Database and Information Systems II. Advances in Intelligent Systems and Computing, vol 312. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10517-8

  • Online ISBN: 978-3-319-10518-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics