Skip to main content

A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields

  • Conference paper
  • 963 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Abstract

In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called a global Newton iterations. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approximate roots; the second one considers the coefficients in the exact RUR as zeroes of a high dimensional map defined by polynomial reduction and applies Newton iteration on this map. We prove that over fields with a p-adic valuation these two approaches give the same iteration function. However, over fields equipped with the usual Archimedean absolute value they are not equivalent. In the latter case, we give explicitly the iteration function for both approaches. Finally, we analyze the parallel complexity of the different versions of the global Newton iteration, compare them, and demonstrate that they can be efficiently computed. The motivation for this study comes from the certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact RUR from approximate numerical data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, J., Fassino, C., Torrente, M.-L.: Stable border bases for ideals of points. J. Symbolic Comput. 43(12), 883–894 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Akoglu, T.A., Hauenstein, J.D., Szanto, A.: Certifying solutions to overdetermined and singular polynomial systems over Q. (2013) (manuscript)

    Google Scholar 

  3. Avendaño, M., Krick, T., Pacetti, A.: Newton-Hensel interpolation lifting. Found. Comput. Math. 6(1), 81–120 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: software for numerical algebraic geometry, bertini.nd.edu

  5. Bini, D., Pan, V.Y.: Polynomial and matrix computations. Progress in Theoretical Computer Science, vol. 1. Birkhäuser Boston Inc., Boston (1994)

    Google Scholar 

  6. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)

    Book  Google Scholar 

  7. Castro, D., Pardo, L.M., Hägele, K., Morais, J.E.: Kronecker’s and Newton’s approaches to solving: a first comparison. J. Complexity 17(1), 212–303 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chistov, A.L.: An algorithm of polynomial complexity for factoring polynomials, and determination of the components of a variety in a subexponential time. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 137, 124–188 (1984)

    Google Scholar 

  9. Fassino, C.: Almost vanishing polynomials for sets of limited precision points. J. Symbolic Comput. 45(1), 19–37 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fassino, C., Torrente, M.-L.: Simple varieties for limited precision points. Theoret. Comput. Sci. 479, 174–186 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ferguson, H.R.P., Bailey, D.H., Arno, S.: Analysis of PSLQ, an integer relation finding algorithm. Math. Comp. 68(225), 351–369 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giusti, M., Heintz, J., Hägele, K., Morais, J.E., Pardo, L.M., Montaña, J.L.: Lower bounds for Diophantine approximations. J. Pure Appl. Algebra 117/118, 277–317 (1997)

    Google Scholar 

  13. Giusti, M., Heintz, J., Morais, J.E., Morgenstern, J., Pardo, L.M.: Straight-line programs in geometric elimination theory. J. Pure Appl. Algebra 124, 101–146 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complexity 17(1), 154–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grigorév, D.Y.: Factoring polynomials over a finite field and solution of systems of algebraic equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 137, 20–79 (1984)

    Google Scholar 

  16. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hauenstein, J.D., Pan, V.Y., Szanto, A.: Global Newton Iteration over Archimedean and non-Archimedean Fields - Full Version. arXiv:1404.5525

    Google Scholar 

  18. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Software 38(4), Art. ID 28, 20 (2012)

    Google Scholar 

  19. Heintz, J., Krick, T., Puddu, S., Sabia, J., Waissbein, A.: Deformation techniques for efficient polynomial equation solving. J. Complexity 16(1), 70–109 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heldt, D., Kreuzer, M., Pokutta, S., Poulisse, H.: Approximate computation of zero-dimensional polynomial ideals. J. Symbolic Comput. 44(11), 1566–1591 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jeronimo, G., Krick, T., Sabia, J., Sombra, M.: The computational complexity of the Chow form. Found. Comput. Math. 4(1), 41–117 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeronimo, G., Perrucci, D.: On the minimum of a positive polynomial over the standard simplex. J. Symbolic Comput. 45(4), 434–442 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kaltofen, E.: Polynomial-time reductions from multivariate to bi- and univariate integral polynomial factorization. SIAM J. Comput. 14(2), 469–489 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaltofen, E.: Sparse Hensel lifting. In: Caviness, B.F. (ed.) GI-Fachtagung 1973. LNCS, vol. 204, pp. 4–17. Springer, Berlin (1985)

    Google Scholar 

  25. Kannan, R., Lenstra, A.K., Lovász, L.: Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers. Math. Comp. 50(181), 235–250 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karp, R., Ramachandran, V.: Parallel algorithms for shared-memory machines. In: Handbook of Theoretical Computer Science, vol. A, pp. 869–941. Elsevier (1990)

    Google Scholar 

  27. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lichtblau, D.: Exact computation using approximate Gröbner bases. available in the Wolfram electronic library

    Google Scholar 

  29. Mourrain, B., Trébuchet, P.: Stable normal forms for polynomial system solving. Theoret. Comput. Sci. 409(2), 229–240 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pan, V.Y.: Parametrization of Newton’s iteration for computations with structured matrices and applications. Comput. Math. Appl. 24(3), 61–75 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001)

    Book  Google Scholar 

  32. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing 9(5), 433–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shirayanagi, K.: An algorithm to compute floating point Groebner bases. In: Mathematical Computation with Maple V: Ideas and Applications, Ann Arbor, MI, pp. 95–106. Birkhäuser Boston, Boston (1993)

    Chapter  Google Scholar 

  34. Shirayanagi, K.: Floating point Gröbner bases. Math. Comput. Simulation 42(4-6), 509–528 (1996); Symbolic Computation, New Trends and Developments (Lille, 1993)

    Google Scholar 

  35. Stetter, H.J.: Numerical polynomial algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2004)

    Book  MATH  Google Scholar 

  36. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis computation. In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 262–269 (electronic). ACM, New York (2002)

    Google Scholar 

  37. Trinks, W.: On improving approximate results of buchberger’s algorithm by newton’s method. In: Caviness, B. (ed.) ISSAC 1985 and EUROCAL 1985. LNCS, vol. 204, pp. 608–612. Springer, Heidelberg (1985)

    Google Scholar 

  38. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

    Article  MATH  Google Scholar 

  39. Wampler, C.W., Larson, B., Edrman, A.: A new mobility formula for spatial mechanisms. In: Proc. DETC/Mechanisms & Robotics Conf., September 4-7 (2007)

    Google Scholar 

  40. Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symbolic Comput. 6(2-3), 287–304 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zassenhaus, H.: On Hensel factorization. I. J. Number Theory 1, 291–311 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hauenstein, J.D., Pan, V.Y., Szanto, A. (2014). A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics