Skip to main content

Fungal Transposable Elements

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 2

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Transposable elements (TEs) are mobile and mostly repetitive genetic elements, which are ubiquitously distributed throughout all kingdoms. They are able to change their position within the genome and therefore have a huge impact on genome diversity. They are very diverse in structure and transposition mechanism. These characteristics led to a special classification system: class I TEs transpose via an RNA intermediate and class II elements transpose directly on DNA-level.

Additionally TEs can be used as tools for random mutagenesis. Their impact on gene expression as well as their ability to cause mutations makes them an interesting tool. The use of TEs for random mutagenesis would aid gene characterization in many filamentous fungi for instance in pathogenic or biotechnological important strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts MGM, Dirkse WG, Stiekema WJ, Pereira A (1993) Transposon tagging of a male sterility gene in Arabidopsis. Nature 363:715–717

    CAS  PubMed  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens sclerotinia sclerotiorum and botrytis cinerea. PLoS Genet 7(8):1002230

    Google Scholar 

  • Amutan M, Nyyssönen E, Stubbs J, Diaz-Torres MR, Dunn-Coleman N (1996) Identification and cloning of a mobile transposon from Aspergillus niger var. Awamori. Curr Genet 29:468–473

    CAS  PubMed  Google Scholar 

  • Arkhipova I (2006) Distribution and phylogeny of penelope-like elements in eukaryotes. Syst Biol 55(6): 875–885

    PubMed  Google Scholar 

  • Bao W, Jurka MG, Kapitonov VV, Jurka J (2009) New superfamilies of eukaryotic DNA transposons and their internal divisions. Mol Biol Evol 26(5):983–993

    PubMed Central  CAS  PubMed  Google Scholar 

  • Belancio VP, Deininger PL, Roy-Engel AM (2009) Review LINE dancing in the human genome: transposable elements and disease. Genome Med 1(10):97

    PubMed Central  PubMed  Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15(6):621–627

    CAS  PubMed  Google Scholar 

  • Biémont C (2009) Are transposable elements simply silenced or are they under house arrest? Trends Genet 25(8):333–334

    PubMed  Google Scholar 

  • Biémont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186(4):1085–1093

    PubMed Central  PubMed  Google Scholar 

  • Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524

    PubMed  Google Scholar 

  • Bonocora RP, Shub DA (2009) A likely pathway for formation of mobile group I introns. Current Biol CB 19(3):223–28

    CAS  Google Scholar 

  • Bowen NJ, Jordan IK, Epstein JA, Wood V, Levin HL (2003) Retrotransposons and their recognition of Pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res 13(9): 1984–1997

    PubMed Central  CAS  PubMed  Google Scholar 

  • Braumann I, van den Berg M, Kempken F (2007) Transposons in biotechnologically relevant strains of Aspergillus niger and Penicillium chrysogenum. Fungal Genet Biol 44(12):1399–1414

    CAS  PubMed  Google Scholar 

  • Braumann I, van den Berg M, Kempken F (2008) Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 53:287–297

    CAS  PubMed  Google Scholar 

  • Bushley KE, Raja R, Jaiswal P, Cumbie JS, Nonogaki M, Boyd AE, Owensby CA, Knaus BJ, Elser J, Miller D, Di Y, McPhail KL, Spatafora JW (2013) The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster. PLoS Genet 9(6):e1003496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cambareri EB, Jensen BC, Schabacht E, Selker EU (1989) Repeat-induced G-C to A-T mutations in neurospora. Science 244:1571–1575

    CAS  PubMed  Google Scholar 

  • Cameron JR, Loh EY, Davis RW (1979) Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16(4):739–751

    CAS  PubMed  Google Scholar 

  • Cappello J, Handelsmann K, Lodish HF (1985) Sequence of dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell 43:105–115

    CAS  PubMed  Google Scholar 

  • Chalvet F, Grimaldi C, Kaper F, Langin T, Daboussi M-J (2003) Hop, an active mutator-like element in the genome of the fungus Fusarium oxysporum. Mol Biol Evol 20(8):1362–1375

    CAS  PubMed  Google Scholar 

  • Chalvet F, Kaper F, Langin T, Daboussi MJ (2001) Hop, an active MuDR-like element in the filamentous fungus Fusarium oxysporum. Fungal Genet Newsl 48(Suppl):86

    Google Scholar 

  • Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3(May):913

    PubMed Central  PubMed  Google Scholar 

  • Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous Ascomycetes. Fungal Genet Biol 48(3):306–326

    PubMed  Google Scholar 

  • Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448(2):105–114

    CAS  PubMed  Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma L-J, Danchin EGJ, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618

    PubMed Central  PubMed  Google Scholar 

  • Craig NL, Craigie R, Gellert M, Lambowitz A (2002) Mobile DNA II. American Society for Microbiology Press, Washington

    Google Scholar 

  • Daboussi MJ, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57:275–299

    CAS  PubMed  Google Scholar 

  • Daboussi MJ, Langin T (1994) Transposable elements in the fungal plant pathogen Fusarium oxysporum. Genetica 93:49–59

    CAS  Google Scholar 

  • Daboussi MJ, Langin T, Brygoo Y (1992) Fot1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13(4):414–430

    PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986

    CAS  PubMed  Google Scholar 

  • Döring HP, Tillmann E, Starlinger P (1984) DNA sequence of the maize transposable element dissociation. Nature 307:127–131

    PubMed  Google Scholar 

  • Eickbush TH, Malik HS (2002) Origins and evolution of retrotransposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM, Washington, pp 1111–1144

    Google Scholar 

  • Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18

    PubMed Central  PubMed  Google Scholar 

  • Emerson RA (1914) The inheritance of a recurring somatic variation in variegated ears of maize. Am Nat 48(566):87–115

    Google Scholar 

  • Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury J-M, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EGJ, Henrissat B, El Khoury R, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9(5):R77

    PubMed Central  PubMed  Google Scholar 

  • Evgen’ev MB, Zelentsova H, Shostak N, Kozistina M, Barskyi V (1997) Penelope, a new family of transposable elements and its possible role in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci U S A 94:196–201

    PubMed Central  PubMed  Google Scholar 

  • Evgen’ev MB, Arkhipova IR (2005) Penelope-like elements—a new class of retroelements: distribution, function and possible evolutionary significance. Cytogenet Genome Res 110(1–4):510–521

    PubMed  Google Scholar 

  • Farman ML, Tosa Y, Nitta N (1996) Maggy, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet 251:665–674

    CAS  PubMed  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    PubMed Central  PubMed  Google Scholar 

  • Fernandez D, Quinten M, Tantaoui A, Geiger JP, Daboussi MJ, Langin T (1998) Fot 1 insertions in the Fusarium oxysporum F. sp. albedinis genome provide diagnostic PCR targets for detection of the date palm pathogen. Appl Environ Microbiol 64:633–636

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham EJ (2005) Non-mammalian c-integrases are encoded by giant transposable elements. Trends Genet 21(10):551–552

    CAS  PubMed  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Petersen D, Nelson MA, Werner Mary W, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barret R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside DE, Li W, Pratt R, Osmani SA, DeSouza CPC, Glass L-N, Orbach MJ, Berglung JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap JC, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–68

    CAS  PubMed  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A fumigatus and A oryzae. Nature 438(7071):1105–1115

    CAS  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20(9):417–423

    CAS  PubMed  Google Scholar 

  • Gao Q, Jin K, Ying S-H, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie X-Q, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma L-J, St Leger RJ, Zhao G-P, Pei Y, Feng M-G, Xia Y, Wang C (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7(1):e1001264

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Hou Y, Ebina H, Levin HL, Voytas DF (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18(3):359–369

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Voytas DF (2005) An eukaryotic gene family related to retroelement integrases. Trends Genet 21(March 2005):133–137

    CAS  PubMed  Google Scholar 

  • Gladyshev EA, Arkhipova IR (2007) Telomere-associated endonuclease-deficient penelope-like retroelements in diverse eukaryotes. Proc Natl Acad Sci U S A 104(22):9352–9357

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goodwin T, Ormandy J, Poulter R (2001) L1-like non-LTR retrotransposons in the yeast Candida albicans. Curr Genet 39(2):83–91

    CAS  PubMed  Google Scholar 

  • Goodwin TJ, Butler MI, Poulter RT (2003) Cryptons: a group of tyrosine-recombinase-encoding DNA transposons from pathogenic fungi. Microbiology 149: 3099–3109

    CAS  PubMed  Google Scholar 

  • Goodwin TJD, Poulter RTM (2004) A new group of tyrosine recombinase-encoding retrotransposons. Mol Biol Evol 21(4):746–759

    CAS  PubMed  Google Scholar 

  • Goyon C, Rossignol JL, Faugeron G (1996) Native DNA repeats and methylation in ascobolus. Nucleic Acids Res 24:3348–3356

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grover CE, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot 2010(4): 1–8

    Google Scholar 

  • Han JS (2010) Non-long terminal repeat (non-LTR) retrotransposons: mechanisms, recent developments, and unanswered questions. Mob DNA 1(1):15

    PubMed Central  PubMed  Google Scholar 

  • Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22(3):191–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • He C, Nourse JP, Kelemu S, Irwin JAG, Manners JM (1996) CgT1: a non-LTR retrotransposon with restricted distribution in the fungal phytopathogen Colletotrichum gloeosporioides. Mol Gen Genet 252: 320–331

    CAS  PubMed  Google Scholar 

  • Hehl R, Baker B (1990) Properties of the maize transposable element activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell 2(8): 709–721

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hihlal E, Braumann B, van den Berg M, Kempken F (2011) Suitability of vader for transposon-mediated mutagenesis in Aspergillus niger. Appl Enivron Mircobiol 77(7):2332–2336

    CAS  Google Scholar 

  • Hua-Van A, Daviere JM, Kaper F, Langin T, Daboussi MJ (2000) Genome organization in Fusarium oxysporum: clusters of class II transposons. Curr Genet 37: 339–347

    CAS  PubMed  Google Scholar 

  • Ikadai H, Shaw Saliba K, Kanzok SM, McLean KJ, Tanaka TQ, Cao J, Williamson KC, Jacobs-Lorena M (2013) Transposon mutagenesis identifies genes essential for plasmodium Falciparum gametocytogenesis. Proc Natl Acad Sci U S A 110(18):E1676–E1684

    PubMed Central  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Janicki M, Rooke R, Yang G (2011) Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 19(6):787–808

    CAS  PubMed  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421(6919):163–167

    CAS  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A 94(5):1872–1877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467

    CAS  PubMed  Google Scholar 

  • Kachroo P, Leong SA, Chattoo BB (1995) Mg-SINE: a short interspersed nuclear element from the rice blast fungus, Magnaphorte grisea. Proc Natl Acad Sci U S A 92:11125–11129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111(3): 433–444

    CAS  PubMed  Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Pérez-Martin J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101

    PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci U S A 98: 8714–8719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3(6):e181

    PubMed Central  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2006) Self-synthesizing DNA transposons in eukaryotes. Proc Natl Acad Sci U S A 103:4540–4545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2008) An universal classification of eukaryotic transposable elements implemented in repbase. Nat Rev Genet 9:411–412

    PubMed  Google Scholar 

  • Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science (New York, N Y) 303(5664): 1626–32

    CAS  Google Scholar 

  • Kempken F (1999) Fungal transposons: from mobile elements towards molecular tools. Appl Microbiol Biotechnol 52:756–60

    CAS  Google Scholar 

  • Kempken F (2003) Fungal transposable elements: inducers of mutations and molecular tools. In: Arora DK, Khachatourians GG (eds.) Applied mycology and biotechnology, vol. 3 Fungal genomics. Elsevier Science Annual Review Series. pp. 83–99.

    Google Scholar 

  • Kempken F, Hermanns J, Osiewacz HD (1992) Evolution of linear plasmids. J Mol Evol 35:502–513

    CAS  PubMed  Google Scholar 

  • Kempken F, Jacobsen S, Kück U (1998) Distribution of the fungal transposon restless: full-length and truncated copies in closely related strains. Fungal Genet Biol 25:110–118

    CAS  PubMed  Google Scholar 

  • Kempken F, Kück U (1996) Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol 16:6563–6572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kempken F, Kück U (2000) Tagging of a nitrogen pathway-specific regulator gene in Tolypocladium inflatum By the transposon restless. Mol Gen Genet 263:302–308

    CAS  PubMed  Google Scholar 

  • Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9

    CAS  PubMed  Google Scholar 

  • Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF (1998) Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8(5):464–478

    CAS  PubMed  Google Scholar 

  • Kinsey JA (1990) Tad, a LINE-like transposable element of neurospora, can transpose between nuclei in heterokaryons. Genetics 126:232–317

    Google Scholar 

  • Kinsey JA, Helber J (1989) Isolation of a transposable element from Neurospora crassa. Proc Natl Acad Sci U S A 86:1929–1933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2011) SINEs. Wiley interdisciplinary reviews. RNA 2(6):772–786

    CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247:165–221

    CAS  PubMed  Google Scholar 

  • Labbé J, Murat C, Morin E, Tuskan GA, Le Tacon F, Martin F (2012) Characterization of transposable elements in the ectomycorrhizal fungus laccaria bicolor. PLoS One 7(8):e40197

    PubMed Central  PubMed  Google Scholar 

  • Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. Cold Spring Harbor Monograph Archive, Vol. 37 (1999): the RNA WORLD, 2nd ed. The nature of modern RNA suggests a prebiotic RNA world

    Google Scholar 

  • Langin T, Capy P, Daboussi MJ (1995) The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol Gen Genet 246:19–28

    CAS  PubMed  Google Scholar 

  • Lerat E (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104(6):520–533

    CAS  PubMed  Google Scholar 

  • Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, Vamathevan J, Miranda M, Anderson IJ, Fraser JA, Allen JE, Bosdet IE, Brent MR, Chiu R, Doering TL, Donlin MJ, D’Souza CA, Fox DS, Grinberg V, Fu J, Fukushima M, Haas BJ, Huang JC, Janbon G, Jones SJ, Koo HL, Krzywinski MI, Kwon-Chung JK, Lengeler KB, Maiti R, Marra MA, Marra RE, Mathewson CA, Mitchell TG, Pertea M, Riggs FR, Salzberg SL, Schein JE, Shvartsbeyn A, Shin H, Shumway M, Specht CA, Suh BB, Tenney A, Utterback TR, Wickes BL, Wortman JR, Wye NH, Kronstad JW, Lodge JK, Heitman J, Davis RW, Fraser CM, Hyman RW (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307(5713):1321–1324

    PubMed Central  PubMed  Google Scholar 

  • Lucier J-F, Perreault J, Noël J-F, Boire G, Perreault J-P (2007) RTAnalyzer: a web application for finding new retrotransposons and detecting L1 retrotransposition signatures. Nucleic acids Res 35(Web Server issue): W269–W274

    PubMed Central  PubMed  Google Scholar 

  • Ma L-J, Van Der Does HC, Borkovich KA, Coleman JJ, Daboussi M, Di Pietro A, Dufresne M, Freitag M, Henrissat B, Houterman PM, Kang S, Shim W, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Kim E, Hilburn K, Hua-van A, Jonkers W, Li L, Manners JM, Miranda-saavedra D, Mukherjee M, Park G, Park J, Park S, Proctor RH, Ruiz-roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S (2010) Comparative genomics reveals mobile pathogenicity chromosomes in fusarium. Nature 464(7287):367–373

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L-J, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim J-M, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O’Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen Y-Q, Zeng Q, Galagan J, Birren BW, Cuomo CA, Wickes BL (2009) Genomic analysis of the basal lineage fungus rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5(7):e1000549

    PubMed Central  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury J-M, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun M-H, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291): 1033–1038

    CAS  PubMed  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harbor Symp Quant Biol 16:13–47

    CAS  PubMed  Google Scholar 

  • McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth D, Oliver RP (1992) CfT-1: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233:337–347

    CAS  PubMed  Google Scholar 

  • Migheli Q, Lauge R, Daviere JM, Gerlinger C, Kaper F, Langin T, Daboussi MJ (1999) Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. Genetics 151:1005–1013

    PubMed Central  CAS  PubMed  Google Scholar 

  • Migheli Q, Steinberg C, Daviere JM, Olivain C, Gerlinger C, Gautheron N, Alabouvette C, Daboussi MJ (2000) Recovery of mutants impaired in pathogenicity after transposition of impala in Fusarium oxysporum f. sp. melonis. Phytopathology 90:1279–1284

    CAS  PubMed  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, Labutti KM, Lapidus A, Lindquist EA, Lucas SM, Murat C, Riley RW, Salamov AA, Schmutz J, Subramanian V, Wösten HAB, Xu J, Eastwood DC, Foster GD, Sonnenberg ASM, Cullen D, de Vries RP, Lundell T, Hibbett DS, Henrissat B, Burton KS, Kerrigan RW, Challen MP, Grigoriev IV, Martin F (2012) Genome sequence of the button mushroom agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 109(43):17501–17506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muszewska A, Hoffman-Sommer M, Grynberg M (2011) LTR retrotransposons in fungi. PLoS One 6(12): e29425

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muszewska A, Steczkiewicz K, Ginalski K (2013) DIRS and Ngaro retrotransposons in fungi. PLoS One 8(9): e76319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101(33):12248–12253

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novikova O, Fet V, Blinov A (2009) Non-LTR retrotransposons in fungi. Funct Integr Genomics 9(1):27–42

    CAS  PubMed  Google Scholar 

  • Nowrousian M (2010) Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell 9(9):1300–1310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Poggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kuck U, Freitag M (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):e1000891

    PubMed Central  PubMed  Google Scholar 

  • Nyyssönen E, Amutan M, Enfield L, Stubbs J, Dunn-Coleman NS (1996) The transposable element Tan1 of Aspergillus niger var. Awamori, a new member of the Fot1 family. Mol Gen Genet 253:50–56

    PubMed  Google Scholar 

  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, LaButti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GHJ, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJGM, Zhong S, Goodwin SB, Grigoriev IV (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8(12):e1003037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, Bartholomew KA, Coutinho PM, Erdmann S, Fowler TJ, Gathman AC, Lombard V, Henrissat B, Knabe N, Kües U, Lilly WW, Lindquist E, Lucas S, Magnuson JK, Piumi F, Raudaskoski M, Salamov A, Schmutz J, Schwarze FWMR, VanKuyk PA, Horton JS, Grigoriev IV, Wösten HAB (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28(9):957–963

    CAS  PubMed  Google Scholar 

  • Okada N, Hamada M, Ogiwara I, Ohshima K (1997) SINEs and LINEs share common 3′ sequences: a review. Gene 205:229–243

    CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH (2005) Genetics LINEs in mind. Nature 435(7044):890–891

    CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, D’Enfert C, Geysens S, Goosen C, Groot GSP, de Groot PWJ, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JPTW, van den Hondel CAMJJ, van der Heijden RTJM, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NNME, Ram AFJ, Rinas U, Roubos JA, Sagt CMJ, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJJ, Wedler H, Wosten HAB, Zeng A-P, van Ooyen AJJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechol 25(2):221–231

    Google Scholar 

  • Peterson P (2013) Historical overview of transposable element research. In: Peterson T (ed) Plant transposable elements SE—1, methods in molecular biology. Humana, Totowa, pp 1–9, http://dx.doi.org/10.1007/ 978-1-62703-568-2_1

    Google Scholar 

  • Pohlman RF, Fedoroff NV, Messing J (1984) The Nucleotide Sequence of the Maize Controlling Element Activator. Cell 37(2):635–643

    CAS  PubMed  Google Scholar 

  • Poulter RTM, Goodwin TJD, Butler MI (2003) Vertebrate helentrons and other novel helitrons. Gene 313: 201–212

    CAS  PubMed  Google Scholar 

  • Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390:3–17

    CAS  PubMed  Google Scholar 

  • De Queiroz MV, Daboussi MJ (2003) Impala, a transposon from Fusarium oxysporum, is active in the genome of Penicillium griseoroseum. FEMS Microbiol Lett 218:317–321

    PubMed  Google Scholar 

  • Rowold DJ, Herrera RJ (2000) Alu elements and the human genome. Genetica 108(1):57–72

    CAS  PubMed  Google Scholar 

  • Ruiz-Pérez VL, Murillo FJ, Torres-Martínez S (1996) Prt1, an unusual retrotransposon-like sequence in the fungus Phycomyces blakesleeanus. Mol Gen Genet 253(3):324–333

    PubMed  Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20(1):43–45

    CAS  PubMed  Google Scholar 

  • Schmidt AL, Anderson LM (2006) Repetitive DNA elements as mediators of genomic change in response to environmental cues. Biol Rev Camb Philos Soc 81(4): 531–543

    PubMed  Google Scholar 

  • Selker EU (1997) Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet 13:296–301

    CAS  PubMed  Google Scholar 

  • Sentry JW, Kaiser K (1992) P element transposition and targeted manipulation of the drosophila genome. Trends Genet 8:329–331

    CAS  PubMed  Google Scholar 

  • Shaaban M, Palmer JM, El-Naggar WA, El-Sokkary MA, Habib E-SE, Keller NP (2010) Involvement of transposon-like elements in penicillin gene cluster regulation. Fungal Genet Biol 47(5):423–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-Mariner Superfamily : discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY, McMahan C, Muszewska A, Grynberg M, Mandel MA, Kellner EM, Barker BM, Galgiani JN, Orbach MJ, Kirkland TN, Cole GT, Henn MR, Birren BW, Taylor JW (2009) Comparative genomic analyses of the human fungal pathogens coccidioides and their relatives. Genome Res 19(10): 1722–1731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smit A, Hubley R (2010) 2008–2010. RepeatModeler Open-1.0. Http://www.repeatmasker.org

  • Smit A, Hubley R, Green P (2006) 1996–2004. Repeat Masker Open-3.0. Http://www.repeatmasker.org

  • Stajich JE, Wilke SK, Ahrén D, Au CH, Birren BW, Borodovsky M, Burns C, Canbäck B, Casselton LA, Cheng CK, Deng J, Dietrich FS, Fargo DC, Farman ML, Gathman AC, Goldberg J, Guigó R, Hoegger PJ, Hooker JB, Huggins A, James TY, Kamada T, Kilaru S, Kodira C, Kües U, Kupfer D, Kwan HS, Lomsadze A, Li W, Lilly WW, Ma L-J, Mackey AJ, Manning G, Martin F, Muraguchi H, Natvig DO, Palmerini H, Ramesh MA, Rehmeyer CJ, Roe BA, Shenoy N, Stanke M, Ter-Hovhannisyan V, Tunlid A, Velagapudi R, Vision TJ, Zeng Q, Zolan ME, Pukkila PJ (2010) Insights into Evolution of Multicellular Fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107(26):11889–11894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tempel S, Jurka M, Jurka J (2008) VisualRepbase: an interface for the study of occurrences of transposable element families. BMC Bioinformatics 9:345

    PubMed Central  PubMed  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152

    PubMed Central  CAS  PubMed  Google Scholar 

  • Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 9(9):e1003820

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110(1–4): 91–107

    CAS  PubMed  Google Scholar 

  • Wessler SR (1988) Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science 242(4877):399–405

    CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    CAS  PubMed  Google Scholar 

  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf H-U, Güldener U, Tudzynski B (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9(6):e1003475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wood V, Gwilliam R, Rajandream M-A, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerrutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415(6874):871–880

    CAS  PubMed  Google Scholar 

  • Wu B, Hao W (2014) Horizontal transfer and gene conversion as an important driving force in shaping the landscape of mitochondrial introns. G3 (Bethesda, MD) 4(4):605–12

    Google Scholar 

  • Xiao G, Ying S-H, Zheng P, Wang Z-L, Zhang S, Xie X-Q, Shang Y, St Leger RJ, Zhao G-P, Wang C, Feng M-G (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    PubMed Central  PubMed  Google Scholar 

  • Zhang X, Jiang N, Feschotte C, Wessler SR (2004) PIF- and Pong-like transposable elements: distribution, evolution and relationship with tourist-like miniature inverted-repeat transposable elements. Genetics 166(2): 971–986

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Saier MH (2011) Transposon-mediated adaptive and directed mutations and their potential evolutionary benefits. J Mol Microbiol Biotechnol 21(1–2):59–70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

 L.P. received a Max-Buchner-Fellowship. Part of the laboratory work was funded by an EU grant (MARINE FUNGI EU FP7, 2659269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Paun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paun, L., Kempken, F. (2015). Fungal Transposable Elements. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_6

Download citation

Publish with us

Policies and ethics