Skip to main content

Calculating RIP Mutation in Fungal Genomes Using RIPCAL

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 2

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Repeat-induced point mutation (RIP) occurs in some fungal taxa, preferentially mutating C:G nucleotide pairs that reside within repetitive DNA and converting them to T:A. Within the taxon Pezizomycotina, RIP is biased towards mutation of CpA dinucleotides. RIP is an important feature of fungal genomes as its distribution and extent have important implications for genome evolution. Early studies of RIP did not have access to vast amounts of genome sequence information; therefore RIP was measured within one or a handful of repeat sequences using ratios of dinucleotide frequencies. However as whole-genome sequences became available for fungi, it became possible to predict the repeat content of a whole genome and calculate RIP mutation across a large number of sequences from multiple repeat families. The software tool RIPCAL was developed for this purpose and since its release has become widely used in fungal genome analysis pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Amyotte SG, Tan X et al (2012) Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics 13:314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clutterbuck AJ (2011) Genomic evidence of repeat-induced point mutation (RIP) in filamentous ascomycetes. Fungal Genet Biol 48(3):306–326

    Article  PubMed  Google Scholar 

  • Daverdin G, Rouxel T et al (2012) Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathog 8(11):e1003020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DiGuistini S, Wang Y et al (2011) Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci USA 108(6):2504–2509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellwood SR, Syme RA et al (2012) Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Genet Biol 49(10):825–829

    Article  CAS  PubMed  Google Scholar 

  • Fudal I, Ross S et al (2009) Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. Mol Plant Microbe Interact 22(8):932–941

    Article  CAS  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20(9):417–423

    Article  CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K et al (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197(4):1236–1249

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Jin K et al (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 7(1):e1001264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hane JK, Oliver RP (2008) RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics 9:478

    Article  PubMed Central  PubMed  Google Scholar 

  • Hane JK, Oliver RP (2010) In silico reversal of repeat-induced point mutation (RIP) identifies the origins of repeat families and uncovers obscured duplicated genes. BMC Genomics 11:655

    Article  PubMed Central  PubMed  Google Scholar 

  • Hood ME, Katawczik M et al (2005) Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum. Genetics 170(3):1081–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horns F, Petit E et al (2012) Patterns of repeat-induced point mutation in transposable elements of basidiomycete fungi. Genome Biol Evol 4(3):240–247

    Article  PubMed Central  PubMed  Google Scholar 

  • Islam MS, Haque MS et al (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klosterman SJ, Subbarao KV et al (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7(7):e1002137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre F, Joly DL et al (2013) The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Plant Cell 25(6):1946–1959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lord PW, Selley JN et al (2002) CINEMA-MX: a modular multiple alignment editor. Bioinformatics 18(10):1402–1403

    Article  CAS  PubMed  Google Scholar 

  • Manning VA, Pandelova I et al (2013) Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 3(1):41–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Margolin BS, Garrett-Engele PW et al (1998) A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics 149(4):1787–1797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Price AL, Jones NC et al (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(Suppl 1):i351–i358

    Article  CAS  PubMed  Google Scholar 

  • Ropars J, Dupont J et al (2012) Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti. PLoS One 7(11):e49665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rouxel T, Grandaubert J et al (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Santana MF, Silva JC et al (2012) Abundance, distribution and potential impact of transposable elements in the genome of Mycosphaerella fijiensis. BMC Genomics 13:720

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Selker EU, Stevens JN (1987) Signal for DNA methylation associated with tandem duplication in Neurospora crassa. Mol Cell Biol 7(3):1032–1038

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selker EU, Cambareri EB et al (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51(5):741–752

    Article  CAS  PubMed  Google Scholar 

  • Smit AFA, Hubley R et al (1996–2010) RepeatMasker Open-3.0. http://www.repeatmasker.org

  • Van de Wouw AP, Cozijnsen AJ et al (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog 6(11):e1001180

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogel KJ, Moran NA (2013) Functional and evolutionary analysis of the genome of an obligate fungal symbiont. Genome Biol Evol 5(5):891–904

    Article  PubMed Central  PubMed  Google Scholar 

  • Walsh CP, Xu GL (2006) Cytosine methylation and DNA repair. Curr Top Microbiol Immunol 301:283–315

    CAS  PubMed  Google Scholar 

  • Waterhouse AM, Procter JB et al (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang J, Wang L et al (2011) Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 7(9):e1002179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Hane B. MolBiol. (Hons.), Ph.D. Bioinformatics .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hane, J.K. (2015). Calculating RIP Mutation in Fungal Genomes Using RIPCAL. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_5

Download citation

Publish with us

Policies and ethics