Advertisement

Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

  • Deirdre Shoemaker
  • Karan Jani
  • Lionel London
  • Larne Pekowsky
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 40)

Abstract

Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Einstein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

Keywords

Black Hole Gravitational Wave Numerical Relativity Binary Black Hole Binary Neutron Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the organizers and participants of the Sant Cugat Forum on Astrophysics on Gravitational Wave Astrophysics. The work presented here was supported by NSF PHY-0955825.

References

  1. J. Aasi et al., Prospects for localization of gravitational wave transients by the Advanced LIGO and Advanced Virgo observatories (2013a). Preprint. arXiv:1304.0670Google Scholar
  2. J. Aasi et al., Search for gravitational waves from binary black hole inspiral, merger and ringdown in LIGO-Virgo data from 2009–2010. Phys. Rev. D87, 022002 (2013b)ADSGoogle Scholar
  3. J. Aasi et al., The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Class. Quantum Grav. 31, 115004 (2014)ADSCrossRefGoogle Scholar
  4. J. Abadie et al., All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D 85, 122007 (2012a)ADSCrossRefGoogle Scholar
  5. J. Abadie et al., Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Phys. Rev. D85, 082002 (2012b)ADSGoogle Scholar
  6. A.M. Abrahams et al., Gravitational wave extraction and outer boundary conditions by perturbative matching. Phys. Rev. Lett. 80, 1812–1815 (1998)ADSCrossRefGoogle Scholar
  7. F. Acernese et al., Virgo Technical Report VIR-0027A-09 (2009). https://tds.ego-gw.it/ql/?c=6589
  8. P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan et al., Phenomenological template family for black-hole coalescence waveforms. Class. Quantum. Grav. 24, S689–S700 (2007)ADSCrossRefzbMATHGoogle Scholar
  9. P. Ajith et al., The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Class. Quantum Grav. 29, 124001 (2012)ADSCrossRefGoogle Scholar
  10. M. Alcubierre, W. Benger, B. Bruegmann, G. Lanfermann, L. Nerger et al., The 3-D grazing collision of two black holes. Phys. Rev. Lett. 87, 271103 (2001)ADSCrossRefMathSciNetGoogle Scholar
  11. M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney et al. Gauge conditions for long term numerical black hole evolutions without excision. Phys. Rev. D67, 084023 (2003)ADSGoogle Scholar
  12. N. Andersson, K.D. Kokkotas, Towards gravitational wave asteroseismology. Mon. Not. R. Astron. Soc. 299, 1059–1068 (1998)ADSCrossRefGoogle Scholar
  13. N. Andersson et al., The transient gravitational-wave sky. Class. Quantum Grav. 30, 193002 (2013)ADSCrossRefGoogle Scholar
  14. B. Aylott, J.G. Baker, W.D. Boggs, M. Boyle, P.R. Brady et al., Status of NINJA: the Numerical INJection Analysis project. Class. Quantum Grav. 26, 114008 (2009a)ADSCrossRefGoogle Scholar
  15. B. Aylott, J.G. Baker, W.D. Boggs, M. Boyle, P.R. Brady et al., Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Class. Quantum Grav. 26, 165008 (2009b)ADSCrossRefGoogle Scholar
  16. J.G. Baker, M. Campanelli, C.O. Lousto, The Lazarus project: a pragmatic approach to binary black hole evolutions. Phys. Rev. D65, 044001 (2002)ADSGoogle Scholar
  17. J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)ADSCrossRefGoogle Scholar
  18. J.G. Baker, S.T. McWilliams, J.R. van Meter, J. Centrella, D.-I. Choi et al., Binary black hole late inspiral: simulations for gravitational wave observations. Phys. Rev. D75, 124024 (2007)ADSGoogle Scholar
  19. T. Baumgarte, P. Brady, J.D.E. Creighton, L. Lehner, F. Pretorius et al., Learning about compact binary merger: the Interplay between numerical relativity and gravitational-wave astronomy. Phys. Rev. D77, 084009 (2008)ADSGoogle Scholar
  20. E. Berti, V. Cardoso, M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D 73, 024013 (2006)ADSCrossRefMathSciNetGoogle Scholar
  21. E. Berti, V. Cardoso, J.A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, B. Brügmann, Inspiral, merger, and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007)ADSCrossRefGoogle Scholar
  22. P.R. Brady, J.D.E. Creighton, K.S. Thorne, Computing the merger of black hole binaries: the IBBH problem. Phys. Rev. D58, 061501 (1998)ADSGoogle Scholar
  23. S. Brandt, B. Bruegmann, A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606–3609 (1997)ADSCrossRefGoogle Scholar
  24. S. Brandt, R. Correll, R. Gomez, M. Huq, P. Laguna et al., Grazing collisions of black holes via the excision of singularities. Phys. Rev. Lett. 85, 5496–5499 (2000)ADSCrossRefMathSciNetGoogle Scholar
  25. B. Bruegmann, Binary black hole mergers in 3-d numerical relativity. Int. J. Mod. Phys. D8, 85 (1999)ADSCrossRefGoogle Scholar
  26. B. Bruegmann, W. Tichy, N. Jansen, Numerical simulation of orbiting black holes. Phys. Rev. Lett. 92, 211101 (2004)ADSCrossRefGoogle Scholar
  27. A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D59, 084006 (1999)ADSMathSciNetGoogle Scholar
  28. A. Buonanno, G.B. Cook, F. Pretorius, Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D75, 124018 (2007)ADSMathSciNetGoogle Scholar
  29. M. Campanelli et al., Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)ADSCrossRefGoogle Scholar
  30. C. Capano, Y. Pan, A. Buonanno, Impact of higher harmonics in searching for gravitational waves from non-spinning binary black holes. Phys. Rev. D 89, 102003 (2014)ADSCrossRefGoogle Scholar
  31. J. Clark, L. Cadonati, J. Healy, I.S. Heng, J. Logue, N. Mangini, L. London, L. Pekowsky, D. Shoemaker, Investigating binary black hole mergers with principal component analysis. In this volume (2014). arXiv:1406.5426v2Google Scholar
  32. G.B. Cook et al., Boosted three-dimensional black hole evolutions with singularity excision. Phys. Rev. Lett. 80, 2512–2516 (1998)ADSCrossRefGoogle Scholar
  33. N. Cornish. April APS Meeting (2014)Google Scholar
  34. C. Cutler, T.A. Apostolatos, L. Bildsten, L.S. Finn, E.E. Flanagan et al., The last three minutes: issues in gravitational wave measurements of coalescing compact binaries. Phys. Rev. Lett. 70, 2984–2987 (1993)ADSCrossRefGoogle Scholar
  35. M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski et al., Double compact objects III: gravitational wave detection rates (2014). arXiv:1405.7016Google Scholar
  36. O. Dreyer, B. Krishnan, D. Shoemaker, E. Schnetter, Introduction to isolated horizons in numerical relativity. Phys. Rev. D67, 024018 (2003)ADSMathSciNetGoogle Scholar
  37. S. Fischetti, J. Healy, L. Cadonati, L. London, S.R.P. Mohapatra et al., Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers. Phys. Rev. D83, 044019 (2011)ADSGoogle Scholar
  38. E.E. Flanagan, S.A. Hughes, Measuring gravitational waves from binary black hole coalescences: 1. Signal-to-noise for inspiral, merger, and ringdown. Phys. Rev. D57, 4535–4565 (1998a)Google Scholar
  39. E.E. Flanagan, S.A. Hughes, Measuring gravitational waves from binary black hole coalescences: 2. The Waves’ information and its extraction, with and without templates. Phys. Rev. D57, 4566–4587 (1998b)Google Scholar
  40. F. Foucart, L. Buchman, M.D. Duez, M. Grudich, L.E. Kidder et al., First direct comparison of nondisrupting neutron star-black hole and binary black hole merger simulations. Phys. Rev. D88(6), 064017 (2013)Google Scholar
  41. D. Gerosa, M. Kesden, E. Berti, R. O’Shaughnessy, U. Sperhake, Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: a diagnostic of compact-binary formation. Phys. Rev. D87(10), 104028 (2013)Google Scholar
  42. R. Gomez, L. Lehner, R.L. Marsa, J. Winicour, A.M. Abrahams et al., Stable characteristic evolution of generic three-dimensional single black hole space-times. Phys. Rev. Lett. 80, 3915–3918 (1998)ADSCrossRefGoogle Scholar
  43. C. Gundlach, J.M. Martin-Garcia, G. Calabrese, I. Hinder, Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767–3774 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  44. M. Hannam, Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. Gen. Rel. Grav. 46, 1767 (2014)ADSCrossRefMathSciNetGoogle Scholar
  45. M. Hannam, S. Husa, J.G. Baker, M. Boyle, B. Bruegmann et al., The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Phys. Rev. D79, 084025 (2009)ADSGoogle Scholar
  46. M. Hannam, D.A. Brown, S. Fairhurst, C.L. Fryer, I.W. Harry, When can gravitational-wave observations distinguish between black holes and neutron stars? Astrophys. J. 766, L14 (2013)ADSCrossRefGoogle Scholar
  47. G.M. Harry, Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010)ADSCrossRefMathSciNetGoogle Scholar
  48. J. Healy et al., Template mode hierarchies for binary black hole mergers. Phys. Rev. D 88(2), 024034 (2013)Google Scholar
  49. I. Hinder et al., Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Class. Quantum Grav. 31, 025012 (2014)ADSCrossRefGoogle Scholar
  50. I. Kamaretsos, M. Hannam, S. Husa, B.S. Sathyaprakash, Black-hole hair loss: learning about binary progenitors from ringdown signals. Phys. Rev. D85, 024018 (2012a)ADSGoogle Scholar
  51. I. Kamaretsos, M. Hannam, B. Sathyaprakash, Is black-hole ringdown a memory of its progenitor? Phys. Rev. Lett. 109, 141102 (2012b)ADSCrossRefGoogle Scholar
  52. B.J. Kelly, J.G. Baker, Decoding mode mixing in black-hole merger ringdown. Phys. Rev. D87, 084004 (2013)ADSGoogle Scholar
  53. M. Kesden, G. Lockhart, E. Sterl Phinney, Maximum black-hole spin from quasi-circular binary mergers. Phys. Rev. D82, 124045 (2010)ADSGoogle Scholar
  54. G. Khanna, J.G. Baker, R.J. Gleiser, P. Laguna, C.O. Nicasio et al., Inspiralling black holes: The Close limit. Phys. Rev. Lett. 83, 3581–3584 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  55. S, Klimenko, April APS Meeting (2014)Google Scholar
  56. P. Kumar, I. MacDonald, D.A. Brown, H.P. Pfeiffer, K. Cannon et al., Template banks for binary black hole searches with numerical relativity waveforms. Phys. Rev. D89, 042002 (2014)ADSGoogle Scholar
  57. E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A402, 285–298 (1985)ADSCrossRefMathSciNetGoogle Scholar
  58. L. London, J. Healy, D. Shoemaker, Modeling ringdown: beyond the fundamental quasi-normal modes (2014). arXiv:1404.3197Google Scholar
  59. C.O. Lousto, Y. Zlochower, Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. Phys. Rev. Lett. 106, 041101 (2011)ADSCrossRefGoogle Scholar
  60. C.O. Lousto, H. Nakano, Y. Zlochower, M. Campanelli, Statistical studies of Spinning Black-Hole Binaries. Phys. Rev. D81, 084023 (2010)ADSGoogle Scholar
  61. G. Lovelace, Private communication (2014)Google Scholar
  62. G. Lovelace et al. Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins. Class. Quantum Grav. 29, 045003 (2012)ADSCrossRefMathSciNetGoogle Scholar
  63. I. MacDonald, A.H. Mroue, H.P. Pfeiffer, M. Boyle, L.E. Kidder et al., Suitability of hybrid gravitational waveforms for unequal-mass binaries. Phys. Rev. D87, 024009 (2013)ADSGoogle Scholar
  64. C. Misner, Role of Gravitation in Physics - Report from the 1957 Chapel Hill Conference. Max Planck Research Library for the History and Development of Knowledge (1957)Google Scholar
  65. A.H. Mroue et al., A catalog of 174 binary black-hole simulations for gravitational-wave astronomy. Phys. Rev. Lett. 111, 241104 (2013)ADSCrossRefGoogle Scholar
  66. F. Ohme, M. Hannam, S. Husa, Reliability of complete gravitational waveform models for compact binary coalescences. Phys. Rev. D84, 064029 (2011)ADSGoogle Scholar
  67. Y. Pan, A. Buonanno, J.G. Baker, J. Centrella, B.J. Kelly et al., A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case. Phys. Rev. D77, 024014 (2008)ADSGoogle Scholar
  68. L. Pekowsky, J. Healy, D. Shoemaker, P. Laguna, Impact of higher-order modes on the detection of binary black hole coalescences. Phys. Rev. D 87, 084008 (2013a)ADSCrossRefGoogle Scholar
  69. L. Pekowsky et al., Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame. Phys. Rev. D 88(2), 024040 (2013b)Google Scholar
  70. L. Pekowsky, J. Healy, D. Shoemaker, Impact of higher-order modes on parameter recovery from binary black hole coalescences (2014, in preparation)Google Scholar
  71. W.H. Press, S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the kerr metric. Astrophys. J. 185, 649–674 (1973)CrossRefGoogle Scholar
  72. F. Pretorius, Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)ADSCrossRefMathSciNetGoogle Scholar
  73. S. Privitera, S.R.P. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos et al., Improving the sensitivity of a search for coalescing binary black holes with non-precessing spins in gravitational wave data. Phys. Rev. D89, 024003 (2014)ADSGoogle Scholar
  74. J.S. Read, L. Baiotti, J.D.E. Creighton, J.L. Friedman, B. Giacomazzo et al., Matter effects on binary neutron star waveforms. Phys. Rev. D88, 044042 (2013)ADSGoogle Scholar
  75. J.D. Schnittman, Spin-orbit resonance and the evolution of compact binary systems. Phys. Rev. D70, 124020 (2004)ADSGoogle Scholar
  76. K. Somiya, Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012)ADSCrossRefGoogle Scholar
  77. K. Thorne, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987)Google Scholar
  78. B. Vaishnav et al., Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D 76, 084020 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Deirdre Shoemaker
    • 1
  • Karan Jani
    • 1
  • Lionel London
    • 1
  • Larne Pekowsky
    • 1
  1. 1.Center for Relativistic Astrophysics, School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations