Advertisement

Needle Guidance Using Handheld Stereo Vision and Projection for Ultrasound-Based Interventions

  • Philipp J. Stolka
  • Pezhman Foroughi
  • Matthew Rendina
  • Clifford R. Weiss
  • Gregory D. Hager
  • Emad M. Boctor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

With real-time instrument tracking and in-situ guidance projection directly integrated in a handheld ultrasound imaging probe, needle-based interventions such as biopsies become much simpler to perform than with conventionally-navigated systems. Stereo imaging with needle detection can be made sufficiently robust and accurate to serve as primary navigation input. We describe the low-cost, easy-to-use approach used in the Clear Guide ONE generic navigation accessory for ultrasound machines, outline different available guidance methods, and provide accuracy results from phantom trials.

Keywords

guidance ultrasound needle interventions stereo vision projection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khosravi, et al.: One-step Needle Pose Estimation for Ultrasound Guided Biopsies. In: IEEE EMBS (2007)Google Scholar
  2. 2.
    Najafi, et al.: Single camera closed-form real-time needle trajectory tracking for ultrasound. In: SPIE Med. Img. (2011)Google Scholar
  3. 3.
    Wang, et al.: The Kinect as an interventional tracking system. In: SPIE Med. Img. (2012)Google Scholar
  4. 4.
    Goldsmith, et al.: An Inertial-Optical Tracking System for Portable, Quantitative, 3D Ultrasound. In: IEEE IUS (2008)Google Scholar
  5. 5.
    Stolka, et al.: Mult-DoF Probe Trajectory Reconstruction with Local Sensors for 2D-to-3D Ultrasound. In: ISBI (2010)Google Scholar
  6. 6.
    Palmer, et al.: Development and evaluation of optical needle depth sensor for percutaneous diagnosis and Therapies. In: SPIE Med. Img. (2014)Google Scholar
  7. 7.
  8. 8.
    Sun, et al.: Computer-guided US probe realignment by optical tracking. In: IEEE ISBI (2013)Google Scholar
  9. 9.
    Hoßbach et al.: Simplified Stereo-Optical US Plane Calibration. In: SPIE Med. Img. (2013)Google Scholar
  10. 10.
    Sauer, et al.: Video-Assistance for Ultrasound Guided Needle Biopsy. Patent US 2003/0120155 A1Google Scholar
  11. 11.
    Sauer, et al.: Method and Apparatus for Ultrasound Guidance of Needle Biopsies. Patent US 6,689,067 B2Google Scholar
  12. 12.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE PAMI 22(11) (2000)Google Scholar
  13. 13.
    Stolka, et al.: Navigation with local sensors in handheld 3D ultrasound: initial in-vivo experience. In: SPIE Med. Img. (2011)Google Scholar
  14. 14.
    Petriu, E.M.: Absolute Position Measurement Using Pseudo-Random Binary Encoding. IEEE Instrumentation and Measurement Magazine (October 1998), doi:10.1109/5289.706020Google Scholar
  15. 15.
    Jones, et al.: The frequency and significance of small (less than or equal to 15 mm) hepatic lesions detected by CT. American Journal of Roentgenology 155, 535–539 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philipp J. Stolka
    • 1
  • Pezhman Foroughi
    • 1
  • Matthew Rendina
    • 1
  • Clifford R. Weiss
    • 2
  • Gregory D. Hager
    • 1
    • 3
  • Emad M. Boctor
    • 1
    • 2
    • 3
  1. 1.Clear Guide MedicalBaltimoreUSA
  2. 2.RadiologyJohns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Computer ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations