Reconstruction of Coronary Trees from 3DRA Using a 3D+t Statistical Cardiac Prior

  • Serkan Çimen
  • Corné Hoogendoorn
  • Paul D. Morris
  • Julian Gunn
  • Alejandro F. Frangi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


A 3D+t description of the coronary tree is important for diagnosis of coronary artery disease and therapy planning. In this paper, we propose a method for finding 3D+t points on coronary artery tree given tracked 2D+t point locations in X-ray rotational angiography images. In order to cope with the ill-posedness of the problem, we use a bilinear model of ventricle as a spatio-temporal constraint on the nonrigid structure of the coronary artery. Based on an energy minimization formulation, we estimate i) bilinear model parameters, ii) global rigid transformation between model and X-ray coordinate systems, and iii) correspondences between 2D coronary artery points on X-ray images and 3D points on bilinear model. We validated the algorithm using a software coronary artery phantom.


Cardiac Phasis Landmark Point Bilinear Model Coronary Artery Tree Gaussian Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baka, N., Metz, C.T., Schultz, C., Neefjes, L., van Geuns, R.J., Lelieveldt, B.P.F., Niessen, W.J., van Walsum, T., de Bruijne, M.: Statistical coronary motion models for 2D+t/3D registration of x-ray coronary angiography and CTA. Med. Image Anal. 17(6), 698–709 (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, S.Y.J., Carroll, J.D.: Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms. IEEE Trans. Med. Imaging 22(6), 710–721 (2003)CrossRefGoogle Scholar
  3. 3.
    Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE Workshop MMBIA, pp. 190–197 (2000)Google Scholar
  4. 4.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Series B Stat. Methodol. 53(2), 285–339 (1991)MathSciNetGoogle Scholar
  5. 5.
    Grech, M., Debono, J., Xuereb, R.G., Fenech, A., Grech, V.: A comparison between dual axis rotational coronary angiography and conventional coronary angiography. Catheter. Cardiovasc. Interv. 80(4), 576–580 (2012)CrossRefGoogle Scholar
  6. 6.
    Hoogendoorn, C., Duchateau, N., Sanchez-Quintana, D., Whitmarsh, T., Sukno, F.M., De Craene, M., Lekadir, K., Frangi, A.F.: A high-resolution atlas and statistical model of the human heart from multislice CT. IEEE Trans. Med. Imaging 32(1), 28–44 (2013)CrossRefGoogle Scholar
  7. 7.
    Hoogendoorn, C., Sukno, F.M., Ordás, S., Frangi, A.F.: Bilinear models for spatio-temporal point distribution analysis. Int. J. Comput. Vis. 85(3), 237–252 (2009)CrossRefGoogle Scholar
  8. 8.
    Jandt, U., Schäfer, D., Grass, M., Rasche, V.: Automatic generation of 3D coronary artery centerlines using rotational x-ray angiography. Med. Image Anal. 13(6), 846–858 (2009)CrossRefGoogle Scholar
  9. 9.
    Liao, R., Luc, D., Sun, Y., Kirchberg, K.: 3-D reconstruction of the coronary artery tree from multiple views of a rotational x-ray angiography. Int. J. Cardiovasc. Imaging 26, 733–749 (2010)CrossRefGoogle Scholar
  10. 10.
    Nichols, M., Townsend, N., Scarborough, P., Rayner, M.: Cardiovascular disease in europe: epidemiological update. Eur. Heart. J. 34(39), 3028–3034 (2013)CrossRefGoogle Scholar
  11. 11.
    Segars, W.P., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.W.: 4D XCAT phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)CrossRefGoogle Scholar
  12. 12.
    Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural. Comput. 12(6), 1247–1283 (2000)CrossRefGoogle Scholar
  13. 13.
    Yang, J., Wang, Y., Liu, Y., Tang, S., Chen, W.: Novel approach for 3-D reconstruction of coronary arteries from two uncalibrated angiographic images. IEEE Trans. Image Process. 18(7), 1563–1572 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Serkan Çimen
    • 1
  • Corné Hoogendoorn
    • 2
  • Paul D. Morris
    • 3
  • Julian Gunn
    • 3
  • Alejandro F. Frangi
    • 1
  1. 1.Center for Computational Imaging & Simulation Technologies in Biomedicine (CISTIB)University of SheffieldSheffieldUnited Kingdom
  2. 2.CISTIBUniversitat Pompeu Fabra and CIBER-BBNBarcelonaSpain
  3. 3.Department of Cardiovascular ScienceUniversity of SheffieldSheffieldUnited Kingdom

Personalised recommendations