International Conference on Medical Image Computing and Computer-Assisted Intervention

MICCAI 2014: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 pp 276-283 | Cite as

Longitudinal Measurement of the Developing Thalamus in the Preterm Brain Using Multi-modal MRI

  • Zach Eaton-Rosen
  • Andrew Melbourne
  • Eliza Orasanu
  • Marc Modat
  • Manuel Jorge Cardoso
  • Alan Bainbridge
  • Giles S. Kendall
  • Nicola J. Robertson
  • Neil Marlow
  • Sébastien Ourselin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)

Abstract

Preterm birth is a significant public health concern. For infants born very preterm (≤ 32 weeks completed gestation), there is a high instance of developmental disability. Due to the heterogeneity of patient outcomes, it is important to investigate early markers of future ability to provide effective and targeted intervention.

As a neuronal relay centre, the thalamus is critical for effective cognitive function and, thus, development of white matter connections between the thalamus and cortex is vital. By non-invasively examining the state of the thalamus we can monitor development in the preterm period. To track the development we develop a novel registration technique to combine data from multiple modalities, in order to derive the transformation from a preterm scan, to a scan of the same infant at term-equivalent age. By measuring the changes in diffusion parameters over this period on a per-voxel basis, we hope to provide unique insight into neurodevelopment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marlow, N., Wolke, D.: Neurologic and developmental disability at six years of age after extremely preterm birth. New England Journal of Medicine 352, 9–19 (2005)CrossRefGoogle Scholar
  2. 2.
    Volpe, J.J.: Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurology 8(1), 110–124 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ball, G., Boardman, J.P., Rueckert, D., Aljabar, P., Arichi, T., Merchant, N., Gousias, I.S., Edwards, A.D., Counsell, S.J.: The effect of preterm birth on thalamic and cortical development. Cerebral Cortex 22(5), 1016–1024 (2012)CrossRefGoogle Scholar
  4. 4.
    Kostović, I., Judas, M.: The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatrica 99(8), 1119–1127 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61(4), 1000–1016 (2012)CrossRefGoogle Scholar
  6. 6.
    Cardoso, M.J., Wolz, R., Modat, M., Fox, N.C., Rueckert, D., Ourselin, S.: Geodesic information flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 262–270. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Gousias, I.S., Edwards, A.D., Rutherford, M.A., Counsell, S.J., Hajnal, J.V., Rueckert, D., Hammers, A.: Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. NeuroImage 62(3), 1499–1509 (2012)CrossRefGoogle Scholar
  8. 8.
    Kuklisova-Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S.J., Doria, V., Serag, A., Gousias, I.S., Boardman, J.P., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011)CrossRefGoogle Scholar
  9. 9.
    Behrens, T.E.J., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A.M., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, J.M., Matthews, P.M.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience 6(7), 750–757 (2003)CrossRefGoogle Scholar
  10. 10.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)MATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zach Eaton-Rosen
    • 1
  • Andrew Melbourne
    • 1
  • Eliza Orasanu
    • 1
  • Marc Modat
    • 1
  • Manuel Jorge Cardoso
    • 1
  • Alan Bainbridge
    • 3
  • Giles S. Kendall
    • 2
  • Nicola J. Robertson
    • 2
  • Neil Marlow
    • 2
  • Sébastien Ourselin
    • 1
  1. 1.Translational Imaging Group, Centre for Medical Image ComputingUniversity College LondonUK
  2. 2.Academic NeonatologyEGA UCL Institute for Women’s HealthLondonUK
  3. 3.Medical PhysicsUniversity College HospitalLondonUK

Personalised recommendations