A Matching Model Based on Earth Mover’s Distance for Tracking Myxococcus Xanthus

  • Jianxu Chen
  • Cameron W. Harvey
  • Mark S. Alber
  • Danny Z. Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8674)


Tracking the motion of Myxococcus xanthus is a crucial step for fundamental bacteria studies. Large number of bacterial cells involved, limited image resolution, and various cell behaviors (e.g., division) make tracking a highly challenging problem. A common strategy is to segment the cells first and associate detected cells into moving trajectories. However, known detection association algorithms that run in polynomial time are either ineffective to deal with particular cell behaviors or sensitive to segmentation errors. In this paper, we propose a polynomial time hierarchical approach for associating segmented cells, using a new Earth Mover’s Distance (EMD) based matching model. Our method is able to track cell motion when cells may divide, leave/enter the image window, and the segmentation results may incur false alarm, detection lost, and falsely merged/split detections. We demonstrate it on tracking M. xanthus. Applied to error-prone segmented cells, our algorithm exhibits higher track purity and produces more complete trajectories, comparing to several state-of-the-art detection association algorithms.


Match Model Cell Tracking Segmentation Error Image Boundary Image Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bise, R., Yin, Z., Kanade, T.: Reliable cell tracking by global data association. In: ISBI, pp. 1004–1010 (2011)Google Scholar
  2. 2.
    Hillier, F., Lieberman, G.: Introduction to Operations Research, 8th edn. McGraw-Hill (2010)Google Scholar
  3. 3.
    Kachouie, N., Fieguth, P.: Extended-Hungarian-JPDA: Exact single-frame stem cell tracking. IEEE Trans. on Biomedical Eng. 54(11), 2011–2019 (2007)CrossRefGoogle Scholar
  4. 4.
    Kaiser, D.: Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. of the Nat. Acad. of Sci. 76(11), 5952–5956 (1979)CrossRefGoogle Scholar
  5. 5.
    Kremer, H., Gunnemann, S., Wollwage, S., Seidl, T.: Nesting the earth mover’s distance for effective cluster tracing. In: ICSSDM (2013)Google Scholar
  6. 6.
    Li, K., Chen, M., Kanade, T.: Cell population tracking and lineage construction with spatiotemporal context. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 295–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Liu, X., Harvey, C.W., Wang, H., Alber, M.S., Chen, D.Z.: Detecting and tracking motion of Myxococcus xanthus bacteria in swarms. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 373–380. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Padfield, D., Rittscher, J., Roysam, B.: Coupled minimum-cost flow cell tracking for high-throughput quantitative analysis. Med. Image Anal. 15(4), 650–668 (2011)CrossRefGoogle Scholar
  9. 9.
    Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image databases. In: ICCV, pp. 59–66 (1998)Google Scholar
  10. 10.
    Schiegg, M., Hanslovsky, P., Kausler, B.X., Hufnagel, L., Hamprecht, F.: Conservation tracking. In: ICCV, pp. 2928–2935 (2013)Google Scholar
  11. 11.
    Wu, Y., Kaiser, D., Jiang, Y., Alber, M.: Periodic reversal of direction allows myxobacteria to swarm. Proc. of the Nat. Acad. of Sci. 106(4), 1222–1227 (2009)CrossRefGoogle Scholar
  12. 12.
    Xie, J., Khan, S., Shah, M.: Automatic tracking of Escherichia coli bacteria. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 824–832. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jianxu Chen
    • 1
  • Cameron W. Harvey
    • 2
  • Mark S. Alber
    • 2
    • 1
  • Danny Z. Chen
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Notre DameUSA
  2. 2.Department of Appl. and Comput. Math and Stat.University of Notre DameUSA

Personalised recommendations