Skip to main content

Abstract

The cheese surface microbiota plays an important role in the organoleptic properties of smear-ripened cheeses as well as in their hygiene and safety. Besides the study of the diversity and the functions of individual members of these complex microbial consortia, the understanding of the mechanisms that shape the structure and the functional features of these communities is crucial to control cheese quality and safety better. In this chapter, we summarize our current knowledge of the interactions occurring between bacteria from the Actinomycetales order and other microorganisms encountered in smear cheese including bacteria, fungi and pathogens such as Listeria monocytogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bleicher A, Obermajer T, Matijašić BB, Scherer S, Neuhaus K (2010a) High biodiversity and potent anti-listerial action of complex red-smear cheese microbial ripening consortia. Ann Microbiol 60:531–539

    Article  Google Scholar 

  • Bleicher A, Stark T, Hofmann T, Matijasić BB, Rogelj I, Scherer S, Neuhaus K (2010b) Potent antilisterial cell-free supernatants produced by complex red-smear cheese microbial consortia. J Dairy Sci 93:4497–4505

    Article  CAS  PubMed  Google Scholar 

  • Bockelmann W, Hoppe-Seyler T (2001) The surface flora of bacterial smear-ripened cheeses from cow’s and goat’s milk. Int J Food Microbiol 11:307–314

    CAS  Google Scholar 

  • Bonnefoy V, Holmes DS (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611

    Article  CAS  PubMed  Google Scholar 

  • Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  CAS  PubMed  Google Scholar 

  • Chu BC, Garcia-Herrero A, Johanson TH, Krewulak KD, Lau CK, Peacock RS, Slavinskaya Z, Vogel HJ (2010) Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. Biometals 23:601–611

    Article  CAS  PubMed  Google Scholar 

  • Eppert L, Valdés-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red-smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feurer C, Vallaeys T, Corrieu G, Irlinger F (2004) Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J Dairy Sci 87:3189–3197

    Article  CAS  PubMed  Google Scholar 

  • Filiprovic S (1923) Bakteriologische Studien über die Reifung einger Backsteinkäse. Cent f Bakt II Abt 58:9–41

    Google Scholar 

  • Galaup P, Gautier A, Piriou Y, De Villeblanche A, Valla A, Duffosé L (2007) First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d’Or and Maroilles. Innovat Food Sci Emerg Technol 8:373–378

    Article  CAS  Google Scholar 

  • Gaucheron F, Le Graet Y, Raulot K, Piot M (1997) Physicochemical characterization of iron-supplemented skim milk. Int Dairy J 7:141–148

    Article  CAS  Google Scholar 

  • Gori K, Mortensen HD, Arneborg N, Jespersen L (2007) Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species. J Dairy Sci 90:5032–5041

    Article  CAS  PubMed  Google Scholar 

  • Grattepanche F, Miescher-Schwenninger S, Meile L, Lacroix C (2008) Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci Technol 88:421–444

    Article  CAS  Google Scholar 

  • Guenther S, Loessner MJ (2011) Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage 1:94–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Guillier L, Stahl V, Hezard B, Notz E, Briandet R (2008) Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves. Int J Food Microbiol 128:51–57

    Article  CAS  PubMed  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imran M, Bré JM, Guéguen M, Vernoux JP, Desmasures N (2013) Reduced growth of Listeria monocytogenes in two model cheese microcosms is not associated with individual microbial strains. Food Microbiol 33:30–39

    Article  PubMed  Google Scholar 

  • Irlinger F, Mounier J (2009) Microbial interactions in cheese: implications for cheese quality and safety. Curr Opin Biotechnol 20:142–148

    Article  CAS  PubMed  Google Scholar 

  • Iya KK, Frazier WC (1949) The yeast in the surface smear of Brick cheese. J Dairy Sci 32:475–476

    Article  CAS  Google Scholar 

  • Jameson JE (1962) A discussion of the dynamics of Salmonella enrichment. J Hyg (Lond) 60:193–207

    Article  CAS  Google Scholar 

  • Jamet E, Irlinger F, Delbès-Paus C, Montel M-C, Fraud S (2013) Applications dans la filière des produits laitiers et fromagers. In: Zagorec M, Christieans S (eds) Flores protectrices pour la conservation des aliments, 1st edn. Edition Quae, Versailles

    Google Scholar 

  • Jenssen H, Hancock REW (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29

    Article  CAS  PubMed  Google Scholar 

  • Kaiser P, Geyer R, Surmann P, Fuhrmann H (2012) LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 88:28–34

    Article  CAS  PubMed  Google Scholar 

  • Kloos WE, Ballard DN, George CG, Webster JA, Hubner RJ, Ludwig W, Schleifer KH, Fiedler F, Schubert K (1998) Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., Macrococcus bovicus sp. nov. and Macrococcus carouselicus sp. nov. Int J Syst Bacteriol 48:859–877

    Article  CAS  PubMed  Google Scholar 

  • Kosman DJ (2003) Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Krause I, Bockhardt A, Klostermeyer H (1997) Characterization of cheese ripening by free amino acids and biogenic amines and influence of bactofugation and heat-treatment of milk. Lait 77:101–108

    Article  CAS  Google Scholar 

  • Le Marc Y, Valík L, Medvedová A (2009) Modelling the effect of the starter culture on the growth of Staphylococcus aureus in milk. Int J Food Microbiol 129:306–311

    Article  PubMed  Google Scholar 

  • Leclercq-Perlat M-N, Corrieu G, Spinnler H-E (2004) The color of Brevibacterium linens depends on the yeast used for cheese deacidification. J Dairy Sci 87:1536–1544

    Article  CAS  PubMed  Google Scholar 

  • Lecocq J, Guéguen M (1994) Effects of pH and sodium chloride on the interactions between Geotrichum candidum and Brevibacterium linens. J Dairy Sci 77:2890–2899

    Article  CAS  Google Scholar 

  • Lubert DJ, Frazier WC (1955) Microbiology of the surface ripening of Brick cheese. J Dairy Sci 38:981–990

    Article  CAS  Google Scholar 

  • Maisnier-Patin S, Richard J (1995) Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl Environ Microbiol 61:1847–1852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maoz A, Mayr R, Scherer S (2003) Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69:4012–4018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mariani C, Briandet R, Chamba JF, Notz E, Carnet-Pantiez A, Eyoug RN, Oulahal N (2007) Biofilm ecology of wooden shelves used in ripening the French raw milk smear cheese Reblochon de Savoie. J Dairy Sci 90:1653–1661

    Article  CAS  PubMed  Google Scholar 

  • Mellefont LA, McMeekin TA, Ross T (2008) Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. Int J Food Microbiol 121:157–168

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Bleicher A, Neuhaus K, Sarthou AS, Leclercq-Perlat MN, Irlinger F (2010a) Assessment of the anti-listerial activity of microfloras from the surface of smear-ripened cheeses. Food Microbiol 27:302–310

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Loux V, Gibrat JF, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T (2010b) The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 5:e154189

    Article  Google Scholar 

  • Monnet C, Back A, Irlinger F (2012) Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol 78:3185–3192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroecke K, Hoste B, Scherer S, Swings J, Fitzgerald GF, Cogan TM (2005) Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71:6489–6500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier J, Rea MC, O’Connor PM, Fitzgerald GF, Cogan TM (2007) Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese. Appl Environ Microbiol 73:7732–7739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou AS, Hélias A, Irlinger F (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74:172–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker JLW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan L, O’Connor EB, Ross RP, Hill C (2006) Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 100:135–143

    Article  PubMed  Google Scholar 

  • Piton-Malleret C, Gorrieri M (1992) Nature et variabilité de la flore microbienne dans la morge des fromages de Comté et de Beaufort. Lait 72:143–164

    Article  Google Scholar 

  • Place RB, Hiestaind D, Gallmann HR, Teuber M (2003) Staphylococcus equorum subsp. linens, subsp. nov., a starter culture component for surface ripened semi-hard cheeses. Syst Appl Microbiol 26:30–37

    Article  CAS  PubMed  Google Scholar 

  • Purko M, Nelson WO, Wood WA (1951a) The associative action between certain yeast and Bacterium linens. J Dairy Sci 34:699–705

    Article  CAS  Google Scholar 

  • Purko M, Nelson WO, Wood WA (1951b) The equivalence of pantothenic acid and p-aminobenzoic acid for growth of Bacterium linens. J Dairy Sci 34:874–878

    Article  CAS  Google Scholar 

  • Roth E, Schwenninger SM, Eugster-Meier E, Lacroix C (2011) Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages. Int J Food Microbiol 147:26–32

    Article  PubMed  Google Scholar 

  • Saubusse M, Millet L, Delbès C, Callon C, Montel MC (2007) Application of Single Strand Conformation Polymorphism-PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. Int J Food Microbiol 116:126–135

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Maus I, Trost E, Tauch A (2011) Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 12:545

    Article  PubMed Central  PubMed  Google Scholar 

  • Sieuwerts S, de Bok FA, Hugenholtz J, van Hylckama Vlieg JE (2008) Unravelling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74:4997–5007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smid EJ, Lacroix C (2013) Microbe-microbe interactions in mixed culture food fermentations. Curr Opin Biotechnol 24:148–154

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Koch C, Gvozdiak O, Schumann P (1995) Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 45:682–692

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed Central  PubMed  Google Scholar 

  • Valdés-Stauber N, Scherer S (1996) Nucleotide sequence and taxonomical distribution of the bacteriocine gene lin cloned from Brevibacterium linens M18. Appl Environ Microbiol 62:1283–1286

    PubMed Central  PubMed  Google Scholar 

  • van Hijum SA, Vaughan EE, Vogel RF (2013) Application of state-of-art sequencing technologies to indigenous food fermentations. Curr Opin Biotechnol 24:178–186

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Mounier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mounier, J. (2015). Microbial Interactions in Smear-Ripened Cheeses. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_6

Download citation

Publish with us

Policies and ethics