Advertisement

Irreversibility and Collapse Models

  • Mohammad BahramiEmail author
  • Angelo Bassi
  • Sandro Donadi
  • Luca Ferialdi
  • Gabriel León
Chapter
  • 914 Downloads
Part of the On Thinking book series (ONTHINKING, volume 4)

Abstract

Irreversible phenomena are of fundamental importance because they characterize a direction of time. Irreversibility has been observed in three different physical situations, namely, in thermodynamics (monotonic increase of entropy), quantum theory (measurement process), and cosmology (black holes and their entropy). There is no consensus on how these three kinds of irreversibility are connected, and whether there is any common ground that can explain them consistently, or if one of them is more fundamental than the others. A solution to the above questions is to work with a physical theory that picks a preferred direction of time. Collapse models, as quantum non-linear and stochastic theories, may provide us with such a solution. After discussing the features of collapse models in detail, we review the phenomenological implications of these models, with particular attention to the aforementioned issues.

Keywords

Cosmic Microwave Background Loop Quantum Gravity Collapse Mechanism Standard Quantum Mechanic Noise Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

MB acknowledges partial financial support from National Elite Foundation, Iran, and from the K.N. Toosi University, Tehran, Iran; he also acknowledges the hospitality from The Abdus Salam ICTP, where this work was carried out. AB, LF, and SD acknowledge partial financial support from MIUR (PRIN 2008), INFN, COST (MP1006) and the John Templeton Foundation project ‘Quantum Physics and the Nature of Reality.’ GL acknowledges financial support by CONACyT postdoctoral grant.

References

  1. 1.
    Landau LD, Lifshitz EM (1981) Statistical physics, Part 1. Pergamon, New York; Non-relativistic quantum mechanics. Elsevier, New YorkGoogle Scholar
  2. 2.
    Uffink J (2003) In: A Huettemann, G Ernst (eds) Time, chance, and reduction. Cambridge University Press, Cambridge (2010); In: Greven A, Keller G, Warnecke G (eds) Entropy. Princeton University Press, Princeton (2003); Forthcoming in Routledge Encyclopedia of Philosophy online; Stud Hist Philos Mod Phys 32:305394 (2001)Google Scholar
  3. 3.
    Adkins CJ (1983) Equilibrium thermodynamics. Cambridge University Press, New York, NY; Baierlein R (1999) Thermal physics. Cambridge University Press, New York; Huang K (2001) Introduction to statistical physics. Taylor & Francis, LondonGoogle Scholar
  4. 4.
    Loschmidt J (1876) Sitzungsber Kais Akad Wiss Wien Math Naturwiss Classe 73:128–142Google Scholar
  5. 5.
    Callender C (2001) Thermodynamic Asymmetry in time In: Zalta EN (ed) The stanford encyclopedia of philosophy (Spring 2001 Edition)Google Scholar
  6. 6.
    Bassi A, Ghirardi GC (2003) Phys Rep 379:257CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ghirardi GC, Rimini A, Weber T (1986) Phys Rev D 34:470CrossRefADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ghirardi GC, Grassi R, Pearle P (1990) Found Phys 20:1271CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Ghirardi GC, Pearle P, Rimini A (1990) Phys Rev A 42:78CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Diósi L (1988) J Phys A 21:2885CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Adler SL (2007) J Phys A 40:2935CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    Diósi L (1989) Phys Rev A 40:1165CrossRefADSGoogle Scholar
  13. 13.
    Diósi L (1990) Phys Rev A 42:5086CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Belavkin VP, Staszewski P (1989) Phys Lett A 140:359CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Belavkin VP, Staszewski P (1992) Phys Rev A 45:1347CrossRefADSGoogle Scholar
  16. 16.
    Chruściński D, Staszewski P (1992) Phys Scripta 45:193CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gatarek D, Gisin N (1991) J Math Phys 32:2152CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    Halliwell J, Zoupas A (1995) Phys Rev D 52:7294CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Holevo AS (1996) Probab Theory Relat Fields 104:483CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Bassi A (2005) J Phys A 38:3173CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Bassi A, Duerr D (2008) Europhys Lett 84:10005CrossRefADSGoogle Scholar
  22. 22.
    Bassi A, Dürr D, Kolb M (2010) Rev Math Phys 22:55CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Dürr D, Hinrichs G, Kolb M (2011) J Stat Phys 143:1096CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    Adler SL, Bassi A (2009) Science 325:275CrossRefGoogle Scholar
  25. 25.
    Bassi A, Ippoliti E, Vacchini B (2005) J Phys A 38:8017CrossRefADSzbMATHMathSciNetGoogle Scholar
  26. 26.
    Adler SL, Bassi A (2007) J Phys A 40:15083CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Adler SL, Bassi A (2008) J Phys A 41:395308CrossRefMathSciNetGoogle Scholar
  28. 28.
    Bassi A, Ferialdi L (2009) Phys Rev A 80:012116CrossRefADSGoogle Scholar
  29. 29.
    Bassi A, Ferialdi L (2009) Phys Rev Lett 103:050403CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Bassi A, Ghirardi GC (2007) Found Phys 37:169CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pearle P (1999) Phys Rev A 59:80CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Tumulka R (2006) J Stat Phys 125:821CrossRefADSGoogle Scholar
  33. 33.
    Penrose R (1996) Gen Rel Grav 28:581CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    Penrose R (1998) Philos Trans R Soc Lond A 356:1927CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    Diosi L (1984) Phys Lett A 105:199CrossRefADSGoogle Scholar
  36. 36.
    Diosi L (1987) Phys Lett A 120:377CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Albert DZ (2000) Time and chance. Harvard University Press, Cambridge, MAzbMATHGoogle Scholar
  38. 38.
    Bekenstein JD (1973) Phys Rev D 7:2333CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    Hawking, SW (1975) Commun Math Phys 43:199 [Erratum-ibid. 46:206 (1976)]Google Scholar
  40. 40.
    Strominger A, Vafa C (1996) Phys Lett B 379:99; Ashtekar A, Baez J, Corichi A, Krasnov K (1998) Phys Rev Lett 80:904; Ashtekar A, Baez JC, Krasnov K (2001) Adv Theor Math Phys 4:1Google Scholar
  41. 41.
    Sorkin R, Sudarsky D (1999) Class Quant Grav 16:3835–3857; Corichi A, Sudarsky D (2002) Mod Phys Lett A 17:1431–1443; Sudarsky D (2002) Mod Phys Lett A 17:1047–1057CrossRefADSMathSciNetGoogle Scholar
  42. 42.
    DeWitt BS (1967) Phys Rev 160:1113CrossRefADSzbMATHGoogle Scholar
  43. 43.
    Rovelli C (2007) Quantum gravity. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  44. 44.
    Isham CJ (1992) In: “Salamanca 1992, Proceedings, Integrable systems, quantum groups, and quantum field theories” at London Imp. Coll. - ICTP-91-92-25 (92/08, rec.Nov.)Google Scholar
  45. 45.
    Sudarsky D (2011) Int J Mod Phys D 20:509CrossRefADSzbMATHMathSciNetGoogle Scholar
  46. 46.
    Diez-Tejedor A, Sudarsky D (2011) arXiv:1108.4928Google Scholar
  47. 47.
    Sudarsky D (2011) Int J Mod Phys D 20:821CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Gisin N (1989) Helv Phys Acta 62:363MathSciNetGoogle Scholar
  49. 49.
    Gisin N (1990) Phys Lett A 143:1CrossRefADSGoogle Scholar
  50. 50.
    Polchinski J (1991) Phys Rev Lett 66:397CrossRefADSzbMATHMathSciNetGoogle Scholar
  51. 51.
    Gisin N, Rigo M (1995) J Phys A 28:7375CrossRefADSzbMATHMathSciNetGoogle Scholar
  52. 52.
    Ghirardi G-C (2000) Found Phys 30:1337CrossRefMathSciNetGoogle Scholar
  53. 53.
    Perez A, Sahlmann H, Sudarsky D (2006) Class Quant Grav 23:2317CrossRefADSzbMATHMathSciNetGoogle Scholar
  54. 54.
    Joos E et al (2004) Decoherence and the appearance of a classical world in quantum mechanics. Springer, BerlinGoogle Scholar
  55. 55.
    Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, OxfordzbMATHGoogle Scholar
  56. 56.
    Bassi A, Dürr D (2009) J Phys A 42:485302CrossRefADSMathSciNetGoogle Scholar
  57. 57.
    Adler SL, Ramazanoglu FM (2007) J Phys A 40:13395CrossRefADSzbMATHMathSciNetGoogle Scholar
  58. 58.
    Fu Q (1997) Phys Rev A 56:1806CrossRefADSGoogle Scholar
  59. 59.
    Beuthe M (2003) Phys Rept 375:105CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    Christian J (2005) Phys Rev Lett 95:160403CrossRefADSGoogle Scholar
  61. 61.
    Bassi A, Curceanu C, Di Domenico A, Donadi S, Ferialdi L, Hiesmayr B (2013) Found. Phys. 43:813CrossRefADSzbMATHMathSciNetGoogle Scholar
  62. 62.
    Friedman JR et al (1996) Phys Rev Lett 76:3830–3833; del Barco et al (1999) Europhys Lett 47:722–728; Wernsdorfer et al (1997) Phys Rev Lett 79:4014–4017Google Scholar
  63. 63.
    Nakamura Y et al (1999) Nature 398:786–788; van der Wal CH et al (2000) Science 290:773; Friedman JR et al (2000) Nature (London) 406:43Google Scholar
  64. 64.
    Deloglise S et al (2008) Nature 455:51014Google Scholar
  65. 65.
    Hammerer K et al (2010) Rev Mod Phys 82:1041CrossRefADSGoogle Scholar
  66. 66.
    Arndt M et al (1999) Nature 401:680; Gerlich S et al (2007) Nat Phys 3:711; Gerlich S et al (2011) Nat Commun 2:263Google Scholar
  67. 67.
    Hornberger K et al (2011) arXiv:1109.5937Google Scholar
  68. 68.
    Nimmrichter S et al (2011) Phys Rev A 83:04362CrossRefGoogle Scholar
  69. 69.
    Mancini S et al (1997) Phys Rev A 55:3042–3050; Cohadon PF et al (1999) Phys Rev Lett 83:3174; Marshall W et al (2003) Phys Rev Lett 91:130401; Arcizet O et al (2006) Nature 444:71; Kippenberg TJ, Vahala KJ (2008) Science 321:11726; Schliesser A et al (2008) Nat Phys 4:415–419; Marquardt F, Girvin SM (2009) Physics 2:40; Favero CH, Karrai K (2009) Nat Photon 3:2015Google Scholar
  70. 70.
    Romero-Isart O et al (2010) New J Phys 12:033015; Romero-Isart O et al (2011) Phys Rev Lett 107:020405; Romero-Isart O (2011) Phys Rev A 84:052121Google Scholar
  71. 71.
    Riviére R et al (2010) arXiv:1011.0290Google Scholar
  72. 72.
    Mukhanov VF (2005) Physical foundations of cosmology. Cambridge University Press, Cambridge; Weinberg S (2008) Cosmology. Oxford University Press, Oxford; Dodelson S (2003) Modern cosmology. Academic Press, AmsterdamGoogle Scholar
  73. 73.
    Komatsu E et al (2011)Astrophys J Suppl 192:18CrossRefADSGoogle Scholar
  74. 74.
    Starobinsky AA (1980) Phys Lett B 91:99; Guth AH (1981) Phys Rev D 23:347; Linde AD (1982) Phys Lett B 108:389; Albrecht A, Steinhardt PJ (1982) Phys Rev Lett 48:1220Google Scholar
  75. 75.
    Mukhanov VF, Chibisov GV (1981) JETP Lett 33:532, [Pisma Zh Eksp Teor Fiz 33:549 (1981)]; Hawking SW (1982) Phys Lett B 115:295; Starobinsky AA (1982) Phys Lett B 117:175; Guth AH, Pi SY (1982) Phys Rev Lett 49:1110Google Scholar
  76. 76.
    Mukhanov VF (2005) Physical foundations of cosmology, Section 8.3.3. Cambridge University Press, Cambridge; Weinberg S (2008) Cosmology, Section 10.1. Oxford University Press, Oxford; Lyth DH, Liddle AR (2009) The primordial density perturbation: cosmology, inflation and the origin of structure, Section 24.2. Cambridge University Press, Cambridge; Penrose R (2004) The road to reality: a complete guide to the laws of the universe, Section 30.14. Vintage books, New YorkGoogle Scholar
  77. 77.
    Pinto-Neto N, Santos G, Struyve W (2011) arXiv:1110.1339Google Scholar
  78. 78.
    Kiefer C, Joos E (1998) arXiv:quant-ph/9803052; Kiefer C, Lesgourgues J, Polarski D, Starobinsky AA (1998) Class Quant Grav 15:L67. arXiv:gr-qc/9806066; Kiefer C (2000) Nucl Phys Proc Suppl 88:255. arXiv:astro-ph/0006252; Kiefer C, Polarski D (2009) Adv Sci Lett 2:164. arXiv:0810.0087Google Scholar
  79. 79.
    De Unanue A, Sudarsky D (2008) Phys Rev D 78:043510CrossRefADSGoogle Scholar
  80. 80.
    Leon G, Sudarsky D (2010) Class Quant Grav 27:225017CrossRefADSMathSciNetGoogle Scholar
  81. 81.
    Leon G, De Unanue A, Sudarsky D (2011) Class Quant Grav 28:155010CrossRefADSGoogle Scholar
  82. 82.
    Diez-Tejedor A, Leon G, Sudarsky D (2011) arXiv:1106.1176Google Scholar
  83. 83.
    Leon G, Sudarsky D (2011) arXiv:1109.0052Google Scholar
  84. 84.
    Landau SJ, Scoccola CG, Sudarsky D (2011) arXiv:1112.1830Google Scholar
  85. 85.
    Penrose R (2004) Road to reality: a complete guide to the laws of the universe, Section 30. Vintage books, New YorkGoogle Scholar
  86. 86.
    Wald RM (1994) Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago Press, ChicagozbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mohammad Bahrami
    • 1
    • 2
    Email author
  • Angelo Bassi
    • 3
    • 4
  • Sandro Donadi
    • 3
    • 4
  • Luca Ferialdi
    • 3
    • 4
  • Gabriel León
    • 3
  1. 1.The Abdus Salam ICTPTriesteItaly
  2. 2.Science FacultyK. N. Toosi University of TechnologyTehranIran
  3. 3.Department of PhysicsUniversity of TriesteTriesteItaly
  4. 4.Istituto Nazionale di Fisica NucleareSezione di TriesteTriesteItaly

Personalised recommendations