Relativistic Interactions and the Structure of Time

  • Dustin LazaroviciEmail author
Part of the On Thinking book series (ONTHINKING, volume 4)


While our physical description of the world does not contain an objective present, it still adheres to the notion of “instants” or “instantaneous states” that appear through the formulation of physical laws as initial value problems. That these ideas survived even the revolutionary transition from classical Newtonian space–time to relativistic space–time is mostly due to the concept of fields as mediators of relativistic interactions. But the duality of fields and particles is problematic, leading to singularities caused by self-interactions. In this article, it is thus argued that the conception of physical reality as a succession of instantaneous states may be a fundamental fallacy underlying some of the very concrete technical problems that we encounter in modern physics. By the example of the Wheeler–Feynman theory we demonstrate the chances and challenges associated with a conceptual revision that takes relativistic space–time more seriously. Finally, we discuss the possible implications for our philosophical understanding of the structure of time.


Instantaneous State Electromagnetic Interaction Relativistic Space Newtonian Gravity Primitive Ontology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Whitehead AN (1948) Science and the modern world. Pelican Mentor Books, New YorkGoogle Scholar
  2. 2.
    Albert DZ (2013) Physics and narrative. In Baghramian M (ed) Reading putnam. Routledge, New YorkGoogle Scholar
  3. 3.
    Cohen IB (1978) Isaac Newton’s papers & letters on natural philosophy, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  4. 4.
    Schrödinger E (1997) Was ist ein Naturgesetz. Beiträge zum naturwissenschaftlichen Weltbild. Oldenbourg, MünchenGoogle Scholar
  5. 5.
    Wheeler JA, Feynman RP (1945) Interaction with the absorber as the mechanism of radiation. Rev Mod Phys 17(2–3):157CrossRefADSGoogle Scholar
  6. 6.
    Wheeler JA, Feynman RP (1949) Classical electrodynamics in terms of direct inter-particle action. Rev Mod Phys 21(3):425CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dirac PAM (1938) Classical theory of radiating electrons. Proc R Soc A 178:148CrossRefADSGoogle Scholar
  8. 8.
    Born M, Infeld L (1934) Foundation of the new field theory. Commun Math Phys A 144:425–451Google Scholar
  9. 9.
    Fokker AD (1929) Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen. Zeitschr für Physik 58(5):386–393CrossRefADSzbMATHGoogle Scholar
  10. 10.
    Schwarzschild K (1903) Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft. Nachr Ges Wis Göttingen (128):132Google Scholar
  11. 11.
    Gauß CF (1877) A letter to W. Weber in March 19th, 1845, in Gauß: Werke 5:627–629Google Scholar
  12. 12.
    Bauer G, Deckert D-A, Dürr D, Hinrichs G (2014) On Irreversibility and Radiation in Classical Electrodynamics of Point Particles. J Stat Phys 154(1–2):610–622CrossRefzbMATHGoogle Scholar
  13. 13.
    Price H (1996) Time’s arrow and archimedes’ point. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Deckert D-A (2010) Electrodynamic absorber theory. Der Andere Verlag, ISBN 978-3-86247-004-4, TönningGoogle Scholar
  15. 15.
    Bauer G, Deckert D-A, Dürr D (2013) On the existence of dynamics in Wheeler–Feynman electromagnetism. Z Angew Math Phys 64:1087–1124CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Deckert D-A, Dürr D, Vona N (2014) Delay equations of the Wheeler-Feynman type. J Math Sci 202(5):623–636CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ludwig-Maximilians University, Mathematisches InstitutMunichGermany

Personalised recommendations