Advertisement

Relational Events and the Conflict Between Relativity and the Collapse

  • Thomas FilkEmail author
Chapter
  • 926 Downloads
Part of the On Thinking book series (ONTHINKING, volume 4)

Abstract

It is shown that some of the conundrums of quantum theory, which are related to the locality structure of space–time, appear less astounding when space–time is considered as relational, and the localization of an event is defined by the relations this event has to other events. In particular, a relational space (or a relational space–time) might indicate how the dilemma of Bell’s theorem—either quantum theory has no “elements of reality” or it is non-local—can be avoided. Furthermore, it is argued that quantum theory may be more amiable to the implementation of a “present” as compared to classical physics. This present should be considered not as the point-like separation between a future and a past but rather as a temporally extended process related to decoherence. Two models of how a notion of the present can be combined with a relational theory of space–time are presented.

Keywords

Quantum State Quantum Theory Physical Object Spatial Point Relational Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I acknowledge many stimulating discussions during the Parmenides-Workshop “The Forgotten Present” (Munich-Pullach, April 29th – May 2nd, 2010) with all participants, in particular with Julian Barbour, Avshalom Elitzur, Domenico Giulini, Basil Hiley, and Hans Primas.

References

  1. 1.
    Albert DZ, Galchen R (2009) Was Einstein Wrong?: a quantum treat to special relativity. Sci Am 300(3):26–33CrossRefGoogle Scholar
  2. 2.
    Ambjørn J, Jurkiewicz J, Loll R (2008) The self-organizing quantum universe. Sci Am 299(1):24–31Google Scholar
  3. 3.
    Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett 49:1804–1807CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Banks T (1998) Matrix theory. Nucl Phys Proc Suppl 67:180–224CrossRefADSzbMATHGoogle Scholar
  5. 5.
    Barbour J, Bertotti B (1982) Mach’s principle and the structure of dynamical theories. Proc R Soc (Lond) A 382:295CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    Barbour J, Smolin L (1992) Extremal variety as the foundation of a cosmological quantum theory, arXiv: hep-th/9203041v1Google Scholar
  7. 7.
    Bauer M (1983) A time operator in quantum mechanics. Ann Phys 150(1):1–21. Bauer M, A dynamical time operator in relativistic quantum mechanics. arXive 0908.2789Google Scholar
  8. 8.
    Bell JS (1966) On the problem of hidden variables in quantum theory. Rev Mod Phys 38:447CrossRefADSzbMATHGoogle Scholar
  9. 9.
    Billoire A, David F (1986) Scaling properties of randomly triangulated planar random surfaces: a numerical study. Nucl Phys B 275:617CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bohm DJ (1952) A suggested interpretation of the quantum theory in terms of “Hidden” variables I & II. Phys Rev 85:166, 180CrossRefADSGoogle Scholar
  11. 11.
    Bombelli L, Lee J, Meyer D, Sorkin RD (1987) Space–time as a causal set. Phys Rev Lett 59(5):521CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Clark Ch (2010) Quantum theory in discrete spacetime. Preprint UCLAGoogle Scholar
  13. 13.
    Clarke S (1990) Der Briefwechsel mit Gottfried Wilhelm Leibniz von 1715/1716. Felix Meiner Verlag, HamburgGoogle Scholar
  14. 14.
    Cushing JT, Fine A, Goldstein S (1996) Bohmian mechanics and quantum theory: an appraisal. Boston studies in the philosophy of science, vol 184. Springer, NetherlandsCrossRefGoogle Scholar
  15. 15.
    Descartes R (1992) Die Prinzipien der Philosophie (1644). deutscheÜbersetzung, HamburgGoogle Scholar
  16. 16.
    deWitt BS (1970) Quantum mechanics and reality. Phys Today 23:30–35CrossRefGoogle Scholar
  17. 17.
    Einstein A (1920) Die hauptss̈chlichen Gedanken der Relativitätstheorie (The principal ideas of the theory of relativity); Albert Einstein Archives, Call Number 2-69Google Scholar
  18. 18.
    Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777CrossRefADSzbMATHGoogle Scholar
  19. 19.
    Ellis GFR, Rothman T (2010) Time and spacetime: the crystallizing block universe. Int J Theor Phys 49:988–1003CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Everett H (1957) “Relative State” formulation of quantum mechanics. Rev Mod Phys 29:454–462CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Fierz M (1954) über den Ursprung und die Bedeutung der Lehre Isaac Newtons vom absoluten Raum. Gesnerus 11:62Google Scholar
  22. 22.
    Filk T (1992) Equivalence of massive propagator distance and mathematical distance on graphs. Mod Phys Lett A 7:2637–2645CrossRefADSzbMATHMathSciNetGoogle Scholar
  23. 23.
    Filk T (2001) Proper time and Minkowski structure on causal graphs. Classical Quantum Gravity 18:2785–2795CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    Filk T (2005) The problem of locality and a relational interpretation of the wave function. In: Adenier G, Khrennikov AYu, Nieuwenhuizen ThM (eds) Quantum theory: reconsideration of foundations – 3. AIP Conference Proceedings Vol. 750, Melville, New YorkGoogle Scholar
  25. 25.
    Filk T (2006) Relational interpretation of the wave function and a possible way around Bell’s theorem. Int J Theor Phys 45(6):1166–1180CrossRefMathSciNetGoogle Scholar
  26. 26.
    Filk T (2013) Temporal non-locality. Found Phys 43:533–547CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    Filk T, von Müller A (2010) A categorical framework for quantum theory. Ann Phys 522:783–801CrossRefMathSciNetGoogle Scholar
  28. 28.
    Gambini R, Pullin J (2005) Discrete space–time. arXiv preprint gr-qc/0505023Google Scholar
  29. 29.
    Gardner M (1970) Mathematical games – the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120CrossRefGoogle Scholar
  30. 30.
    Goto T, Yamaguchi K, Sudo N (1981) On the time operator in quantum mechanics. Prog Theory Phys 66(5):1525–1538CrossRefADSzbMATHMathSciNetGoogle Scholar
  31. 31.
    Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Education, Inc., Upper Saddle River, New Jersey 07458Google Scholar
  32. 32.
    Hiley B (2001) Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden KG (ed) Correlations. Proc ANPA, vol 23. pp 104–134Google Scholar
  33. 33.
    Hiley B (2015) Parmenides workshop “The Forgotten Present”, April 29th–May 1st, 2010. In: Drieschner M (ed) Present and future in quantum mechanics. Springer, HeidelbergGoogle Scholar
  34. 34.
    Immirizi G (1997) Quantum gravity and Regge calculus. Nuclear Physics B – Proceedings Supplements 57:65–72Google Scholar
  35. 35.
    Leibniz GW (1714) Principles of nature and grace, based on reason. In: The philosophical works of Leibnitz. Tuttle, Morehouse & Taylor, Publishers, 1890Google Scholar
  36. 36.
    Muga JG, Leavens CR (2000) Arrival time in quantum mechanics. Phys Rep 338:353CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    Newton I (1988) De Gravitatione et aequipondo fluidorum. ¨ber die Gravitation und das Gleichgewicht von Flüssigkeiten (around 1670), Klosterman Texte Philosophie, Frankfurt am MainGoogle Scholar
  38. 38.
    Nikonov A, von Müller A (2015) Autogenetic network theory. Springer, HeidelbergGoogle Scholar
  39. 39.
    Olkhovsky VS, Recami E, Gerasimchuk AJ (1974) Time operator in quantum mechanics. Il Nuovo Cimento 22 A(2):263–278Google Scholar
  40. 40.
    Pauli W (1933) Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik Bd. XXIV, 1:140Google Scholar
  41. 41.
    Rovelli C (1998) Relational quantum mechanics. Int J Theor Phys 35:1637–1678CrossRefMathSciNetGoogle Scholar
  42. 42.
    Rovelli C, Smolin L (1995) Spin networks and quantum gravity. Phys Rev D 53:5743CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Scully MO, Drühl K (1982) Quantum eraser – a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantm mechanics. Phys Rev A 25:2208CrossRefADSGoogle Scholar
  44. 44.
    Scully MO, Englert BG, Walther H (1991) Quantum optical tests of complementarity. Nature (London) 351:111CrossRefADSGoogle Scholar
  45. 45.
    Sorkin RD (2009) Light, links and causal sets. J Phys Conf Ser 174:012018CrossRefADSGoogle Scholar
  46. 46.
    Šťovíček P, Tolar J (1984) Quantum mechanics in discrete space–time. Rep Math Phys 20(2):157CrossRefADSzbMATHMathSciNetGoogle Scholar
  47. 47.
    Thiemann T (2003) Lectures on loop quantum gravity. Lect Notes Phys 631:41–135CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    Wang ZY, Xiong CD (2007) How to introduce time operator. Ann Phys 322:2304–2314CrossRefADSzbMATHMathSciNetGoogle Scholar
  49. 49.
    Whitehead AN (1979) Process and reality: an essay in cosmology. The Free Press, New YorkGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of FreiburgFreiburgGermany
  2. 2.Parmenides Center for the Study of ThinkingMunichGermany

Personalised recommendations