Present and Future in Quantum Mechanics

Parmenides Workshop 19: “The Forgotten Present,” April 29–May 2, 2010
  • Michael DrieschnerEmail author
Part of the On Thinking book series (ONTHINKING, volume 4)


After a short overview over the questions of time, permanence, and change in the philosophical tradition, the concept of time in physics is discussed. The fact is emphasized that the usual real parameter t is not sufficient, in some cases, to solve conceptual problems of physics. Sometimes it becomes necessary to consider the “full” concept of time with present, past, and future. This can be seen already with the concept of objectivity, which is intimately connected with predictions. It comes out very clearly especially in probability considerations: The concept of probability can be best understood when it is identified with predicted relative frequency. This insight is used to recall a solution of the problem of the “time arrow” in statistical thermodynamics. It is applied mainly to quantum mechanics, where it is shown that there are rather simple solutions, e.g., to the problem of the “collapse of the wave function” and the “EPR” problem; there the “spooky actions at a distance” are unmasked to be no actions at all.


Wave Function Quantum Mechanic Statistical Thermodynamic Prior Event Deterministic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parmenides (2012) English translation by John Burnet (1892) [(2005) Parmenides of Elea. Kessinger, Whitefish]
  2. 2.
    Ritter J et al (eds) (1971–2007) Historisches Wörterbuch der Philosophie, 13 vols. Schwabe, Basel/StuttgartGoogle Scholar
  3. 3.
    Cornford FM (1935) Plato’s cosmology. Kegan Paul, London (many reprints)Google Scholar
  4. 4.
    Heisenberg W (1969) Der Teil und das Ganze. Piper, München [English: Physics and beyond: encounters and conversations. A.J. Pomerans, trans. New York 1971]Google Scholar
  5. 5.
    Hussey E (1983) Aristotle’s physics, books III and IV. Clarendon, OxfordGoogle Scholar
  6. 6.
    Wieland W (1962) Die aristotelische Physik. Vandenhoeck & Ruprecht, Göttingen [2nd edn, 1970]Google Scholar
  7. 7.
    Augustinus A (1946) St Augustine’s confessions, 2 vols [with an English translation by William Watts]. Heinemann, London (Loeb Classical Library)Google Scholar
  8. 8.
    de Laplace PD (1814) Essai philosophique sur les probabilités. Paris [English translation from the original French 6th ed. by Truscott FW and Emory FL. New York 1951; p 4]Google Scholar
  9. 9.
    Drieschner M (2002) Moderne Naturphilosophie. Mentis, PaderbornGoogle Scholar
  10. 10.
    Drieschner M (1979) Voraussage –Wahrscheinlichkeit – Objekt. Über die begrifflichen Grundlagen der Quantenmechanik (Lecture notes in physics). Springer, BerlinGoogle Scholar
  11. 11.
    Grünbaum A (1963) Philosophical problems of space and time. Knopf, New York [Boston Studies in the Philosophy of Science, 2nd edn. Reidel, Dordrecht/Boston, 1973]Google Scholar
  12. 12.
    Boltzmann L (1896/1898) Vorlesungen über Gastheorie, 2 vols. Leipzig [English translation by Stephen G. Brush: Ludwig Boltzmann, Lectures on gas theory. Dover, New York 1995 (© University of California Press, 1964)]Google Scholar
  13. 13.
    von Weizsäcker CF (1939) Der zweite Hauptsatz und der Unterschied von Vergangenheit und Zukunft. Annalen der Physik 36:275 [Reprinted in: von Weizsäcker CF (1971) Die Einheit der Natur. Studien, München (Hanser) pp 172–182]CrossRefzbMATHGoogle Scholar
  14. 14.
    Gibbs JW (1902) Elementary principles in statistical mechanics, developed with especial reference to the rational foundations of thermodynamics. Scribner’s sons, New York, xviii, 207 p [Reprint Woodbridge, 1981. pp 150–151]Google Scholar
  15. 15.
    Ehrenfest P, Ehrenfest T (1906) Über eine Aufgabe aus der Wahrscheinlichkeitsrechnung, die mit der kinetischen Deutung der Entropievermehrung zusammenhängt. Mech.-Naturw. Blätter 3(11, 12) [Reprinted in Ehrenfest P (1959) Collected scientific papers. In: Klein MJ (ed). Amsterdam (North-Holland)/New York (Interscience)]Google Scholar
  16. 16.
    Drieschner M (2002) Eine Lanze für Kopenhagen. In: Eusterschulte A, Ingensiep HW (eds) Philosophie der natürlichen Mitwelt. Festschrift für K.M.Meyer-Abich. Königshausen & Neumann, Würzburg, pp 171–179Google Scholar
  17. 17.
    von Weizsäcker CF (1941) Das Verhältnis der Quantenmechanik zur Philosophie Kants. Die Tatwelt 17:66–98 [Reprinted in Zum Weltbild der Physik. Stuttgart 1943; augmented editions and reprints 1944–2002]Google Scholar
  18. 18.
    London F, Bauer E (1939) La Theorie de l’Observation en Mechanique Quantique. Hermann, ParisGoogle Scholar
  19. 19.
    Einstein A, Podolski B, Rosen N (1935) Can quantum mechanical description of physical reality be considered complete? Phys Rev 47:777CrossRefADSzbMATHGoogle Scholar
  20. 20.
    Bohm D (1951) Quantum theory. Prentice Hall, New YorkGoogle Scholar
  21. 21.
    Stern O, Gerlach W (1922) Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Zeitschrift für Physik 8:110–111CrossRefADSGoogle Scholar
  22. 22.
    Stern O, Gerlach W (1922) Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Zeitschrift für Physik 9:349–355CrossRefADSGoogle Scholar
  23. 23.
    Born M, Einstein A (1969) Albert Einstein, Max Born. Briefwechsel 1916 – 1955. Nymphenburger, MünchenGoogle Scholar
  24. 24.
    Passon O (2004) Bohmsche Mechanik: Eine elementare Einführung in die Deterministische Interpretation der Quantenmechanik. Harri Deutsch, Frankfurt/MGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ruhr-UniversitätBochumGermany

Personalised recommendations