Advertisement

Measurement Tensors in Diffusion MRI: Generalizing the Concept of Diffusion Encoding

  • Carl-Fredrik Westin
  • Filip Szczepankiewicz
  • Ofer Pasternak
  • Evren Özarslan
  • Daniel Topgaard
  • Hans Knutsson
  • Markus Nilsson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8675)

Abstract

In traditional diffusion MRI, short pulsed field gradients (PFG) are used for the diffusion encoding. The standard Stejskal-Tanner sequence uses one single pair of such gradients, known as single-PFG (sPFG). In this work we describe how trajectories in q-space can be used for diffusion encoding. We discuss how such encoding enables the extension of the well-known scalar b-value to a tensor-valued entity we call the diffusion measurement tensor. The new measurements contain information about higher order diffusion propagator covariances not present in sPFG. As an example analysis, we use this new information to estimate a Gaussian distribution over diffusion tensors in each voxel, described by its mean (a diffusion tensor) and its covariance (a 4th order tensor).

Keywords

Fractional Anisotropy Pulse Field Gradient Propagator Covariance Diffusion Encode Measurement Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Callaghan, P.T.: Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford University Press (2011)Google Scholar
  2. 2.
    Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)CrossRefGoogle Scholar
  3. 3.
    Does, M.D., Parsons, E.C., Gore, J.C.: Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. MRM 49(2), 206–215 (2003)CrossRefGoogle Scholar
  4. 4.
    Cory, D.G., Garriway, A.N., Miller, J.B.: Applications of spin transport as a probe of local geometry. Polym. Prepr. 31, 149–150 (1990)Google Scholar
  5. 5.
    Mitra, P.P.: Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Physical Review B 51(21), 15074 (1995)CrossRefGoogle Scholar
  6. 6.
    Callaghan, P., Komlosh, M.: Locally anisotropic motion in a macroscopically isotropic system: displacement correlations measured using double pulsed gradient spin-echo NMR. Magnetic Resonance in Chemistry 40(13), S15–S19 (2002)Google Scholar
  7. 7.
    Drobnjak, I., Alexander, D.C.: Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. JRM 212(2), 344–354 (2011)CrossRefGoogle Scholar
  8. 8.
    Valette, J., Giraudeau, C., Marchadour, C., Djemai, B., Geffroy, F., Ghaly, M.A., Le Bihan, D., Hantraye, P., Lebon, V., Lethimonnier, F.: A new sequence for single-shot diffusion-weighted nmr spectroscopy by the trace of the diffusion tensor. MRM 68(6), 1705–1712 (2012)CrossRefGoogle Scholar
  9. 9.
    Eriksson, S., Lasic, S., Topgaard, D.: Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. JMR 226, 13–18 (2012)CrossRefGoogle Scholar
  10. 10.
    Lasic, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D.: Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Frontiers in Physics 2(11) (2014)Google Scholar
  11. 11.
    Jensen, J.H., Hui, E.S., Helpern, J.A.: Double-pulsed diffusional kurtosis imaging. NMR in Biomed. (2014)Google Scholar
  12. 12.
    Jespersen, S.S.N., Lundell, H., Snderby, C.K., Dyrby, T.B.: Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR in Biomed. 26(12), 1647–1662 (2013)CrossRefGoogle Scholar
  13. 13.
    Basser, P.J., Pajevic, S.: Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Processing 87(2), 220–236 (2007)CrossRefzbMATHGoogle Scholar
  14. 14.
    Moakher, M.: Fourth-order cartesian tensors: old and new facts, notions and applications. The Quart. Jour. of Mechanics and Applied Math. 61(2), 181–203 (2008)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carl-Fredrik Westin
    • 1
    • 2
  • Filip Szczepankiewicz
    • 3
  • Ofer Pasternak
    • 1
  • Evren Özarslan
    • 1
  • Daniel Topgaard
    • 4
  • Hans Knutsson
    • 2
  • Markus Nilsson
    • 3
  1. 1.Brigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of Biomedical EngineeringLinköping UniversityLinköpingSweden
  3. 3.Lund University Bioimaging CenterLund UniversityLundSweden
  4. 4.Center for Chemistry and Chemical EngineeringLund UniversityLundSweden

Personalised recommendations