Visual Odometry in Stereo Endoscopy by Using PEaRL to Handle Partial Scene Deformation

  • Miguel Lourenço
  • Danail Stoyanov
  • João P. Barreto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8678)

Abstract

Stereoscopic laparoscopy provides the surgeon with the depth perception at the surgical site to facilitate fine micro-manipulation of soft-tissues. The technology also enables computer-assisted laparoscopy where patient specific models can be overlaid onto laparoscopic video in real-time to provide image guidance. To maintain graphical overlay alignment of image-guides it is essential to recover the camera motion and scene geometry during the procedure. This can be performed using the image data itself, however, despite of the mature state of structure-from-motion techniques, their application in minimally invasive surgery remains a challenging problem due non-rigid scene deformation. In this paper, we propose a method for recovering the camera motion of stereo endoscopes through a multi-model fitting approach which segments rigid and non-rigid structures at the surgical site. The method jointly optimizes the segmentation of image and uses the rigid structure to robustly estimate the motion of the laparoscope. Synthetic and in-vivo experiments show that the proposed algorithm outperforms RANSAC-based stereo visual odometry in non-rigid laparoscopic surgery scenes.

Keywords

Peri Estima 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stoyanov, D.: Stereoscopic Scene Flow for Robotic Assisted Minimally Invasive Surgery. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 479–486. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Geiger, A., Roser, M., Urtasun, R.: Efficient Large-Scale Stereo Matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Maier-Hein, L., et al.: Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Medical Image Analysis 17, 974–996 (2013)CrossRefGoogle Scholar
  4. 4.
    Roehl, S., et al.: Dense gpu-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration. Medical Physics 39, 1632–1645 (2012)CrossRefGoogle Scholar
  5. 5.
    Burschka, D., Li, M., Ishii, M., Taylor, R., Hager, G.: Scale-invariant registration of monocular endoscopic images to ct-scans for sinus surgery. Medical Image Analysis 9, 413–426 (2005)CrossRefGoogle Scholar
  6. 6.
    Mountney, P., Yang, G.-Z.: Motion compensated slam for image guided surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 496–504. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Garg, R., Roussos, A., Agapito, L.: Dense variational reconstruction of non-rigid surfaces from monocular video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1272–1279 (2013)Google Scholar
  8. 8.
    Luo, X., Mori, K.: Robust Endoscope Motion Estimation Via an Animated Particle Filter for Electromagnetically Navigated Endoscopy. IEEE Transactions on Biomedical Engineering 61, 85–95 (2014)CrossRefGoogle Scholar
  9. 9.
    Roussos, A., Russell, C., Garg, R., Agapito, L.: Dense multibody motion estimation and reconstruction from a handheld camera. In: IEEE International Mixed and Augmented Reality, pp. 31–40 (2012)Google Scholar
  10. 10.
    Isack, H., Boykov, Y.: Energy-based geometric multi-model fitting. International Journal of Computer Vision 97, 123–147 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Giannarou, S., Zhang, Z., Yang, G.Z.: Deformable structure from motion by fusing visual and inertial measurement data. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4816–4821 (2012)Google Scholar
  12. 12.
    Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3d reconstruction in real-time. In: IEEE Intelligent Vehicles Symposium, pp. 963–968 (2011)Google Scholar
  13. 13.
    Farnebäck, G.: Two-Frame Motion Estimation Based on Polynomial Expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4, 629–642 (1987)CrossRefGoogle Scholar
  15. 15.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  16. 16.
    Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment – A modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 298–375. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Miguel Lourenço
    • 1
  • Danail Stoyanov
    • 2
  • João P. Barreto
    • 1
    • 3
  1. 1.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal
  2. 2.Centre for Medical Image ComputingUniversity College of LondonLondonUK
  3. 3.Perceive 3DCoimbraPortugal

Personalised recommendations