Avigad, J., E. Dean, and J. Mumma. 2009. A formal system for Euclid’s Elements. Review of Symbolic Logic 2: 700–768.
CrossRef
Google Scholar
Awodey, S., and E.H. Reck. 2002. Completeness and categoricity. Part I: nineteenth-century axiomatics to twentieth-century metalogic. History and Philosophy of Logic 23: 1–30.
Google Scholar
Beeson, M. 2010. Constructive geometry. In Proceedings of the tenth Asian logic conference, ed. T. Arai et al., 19–84. Singapore: World Scientific.
Google Scholar
Bernays, P. 1930. Die Philosophie der Mathematik und die Hilbertsche Beweistheorie. [The philosophy of mathematics and Hilbert’s proof theory] English trans. P. Mancosu. In Mancosu (1998), 234–265.
Google Scholar
Bernays, P. 1967. David Hilbert. In Encyclopedia of philosophy, ed. P. Edwards, vol. 3, 496–505. New York: MacMillan.
Google Scholar
Bishop, E. 1967. Foundations of constructive analysis. New York: McGraw-Hill.
Google Scholar
Brouwer, L.E.J. 1924. Intuitionistische Zerlegung mathematischer Grundbgriffe. Jahresbericht der Deutsche Mathematiker-Vereinigung 33: 241–256.
Google Scholar
Dowek, G. 2009. Principles of programming languages. Berlin: Springer.
Google Scholar
Dummett, M. 1963. Realism. In Id., Truth and other enigmas, 145–165. London: Duckworth.
Google Scholar
Dummett, M. 1977. Elements of intuitionism. Oxford: Clarendon Press.
Google Scholar
Engeler, E. 1968. Remarks on the theory of geometrical constructions. In The syntax and semantics of infinitary languages, Lecture notes in mathematics, vol. 72, ed. J. Barwise, 64–76. Berlin: Springer.
CrossRef
Google Scholar
Engeler, E. 1993. Foundations of mathematics: questions of analysis, geometry and algorithmics, English trans. C.B. Thomas. Berlin: Springer.
CrossRef
Google Scholar
Feferman, S. 1964. Systems of predicative analysis. Journal of Symbolic Logic 29: 1–30.
CrossRef
Google Scholar
Feferman, S. 2005. Predicativity. In The Oxford handbook of philosophy of mathematics and logic, ed. S. Shapiro, 590–624. Oxford: Oxford University Press.
CrossRef
Google Scholar
Friedman, H. 1999. A consistency proof for elementary algebra and geometry. Manuscript.
Google Scholar
Gandy, R. 1988. The confluence of ideas in 1936. In The universal turing machine: a half-century survey, ed. R. Herken, 51–102. Berlin: Springer.
Google Scholar
Givant, S., and A. Tarski. 1999. Tarski’s system of geometry. The Bulletin of Symbolic Logic 5: 175–214.
CrossRef
Google Scholar
Greenberg, M.J. 1993. Euclidean and non-Euclidean geometries: development and history, 3rd ed. New York: W.H. Freeman.
Google Scholar
Hallett, M. 2008. Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie. In The philosophy of mathematical practice, ed. P. Mancosu, 198–255. Oxford: Oxford University Press.
Google Scholar
Heyting, A. 1925. Intuitionistische Axiomatik der Projectieve Meetkunde. Groningen: P. Noordhoff.
Google Scholar
Heyting, A. 1959. Axioms for intuitionistic plane affine geometry. In L. Henkin et al. (1959), 160–173.
Google Scholar
Heyting, A. 1971. Intuitionism: an introduction. Amsterdam: North Holland.
Google Scholar
Henkin, L., P. Suppes, and A. Tarski (eds.). 1959. The axiomatic method, with special reference to geometry and physics. Amsterdam: North Holland.
Google Scholar
Hindley, J.R. and J.P. Seldin 2008. Lambda-calculus and combinators: an introduction. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Kolmogorov, A. 1932. Zur Deutung der intuitionistischen Logik. [On the interpretation of intuitionistic logic], English trans. P. Mancosu. In Mancosu (1998), 328–333.
Google Scholar
Kreisel, G. 1981. Constructivist approaches to logic. In Modern logic, a survey: historical, philosophical, and mathematical aspects of modern logic and its applications, ed. E. Agazzi, 67–91. Dordrecht: Reidel.
CrossRef
Google Scholar
Lombard, M., and R. Vesley 1998. A common axiom set for classical and intuitionistic plane geometry. Annals of Pure and Applied Logic 95, 229–255.
CrossRef
Google Scholar
Mancosu, P. (ed.). 1998. From Brouwer to Hilbert: the debate on the foundations of mathematics in the 1920’s. Oxford: Oxford University Press.
Google Scholar
Martin-Löf, P. 1970. Notes on constructive mathematics. Stockholm: Almqvist & Wiksell.
Google Scholar
Martin-Löf, P. 1984. Intuitionistic type theory. Naples: Bibliopolis.
Google Scholar
Mäenpää, P., and J. von Plato. 1993. The logic of Euclidean construction procedure. Acta Philosophica Fennica 49: 275–293.
Google Scholar
Mints, G.E. 2000. Axiomatization of a Skolem function in intuitionistic logic. In Formalizing the dynamics of information, CSLI lecture notes, vol. 91, ed. M. Faller et al., 105–114. Stanford: CSLI Publications.
Google Scholar
Moler, N., and P. Suppes. 1968. Quantifier-free axioms for constructive plane geometry. Compositio Mathematica 20: 143–152.
Google Scholar
Mueller, I. 1981. Philosophy of mathematics and deductive structure in Euclid’s elements. Cambridge, Mass.: MIT.
Google Scholar
Mumma, J. 2012. Constructive geometrical reasoning and diagrams. Synthese 186: 103–119.
CrossRef
Google Scholar
Negri, S. 2003. Contraction-free sequent calculi for geometric theories with an application to Barr’s theorem. Archive for Mathematical Logic 42: 389–401.
CrossRef
Google Scholar
Negri, S., and J. von Plato. 2001. Structural proof theory. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Negri, S., and J. von Plato. 2005. The duality of classical and constructive notions and proofs. In From sets and types to topology and analysis: towards practicable foundations for constructive mathematics, ed. L. Crosilla and P. Schuster, 149–161. Oxford: Oxford University Press.
CrossRef
Google Scholar
Negri, S., and von Plato, J. 2011. Proof analysis: a contribution to Hilbert’s last problem. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Quaife, A. 1989. Automated development of Tarski’s geometry. Journal of Automated Reasoning 5: 97–118.
CrossRef
Google Scholar
Pambuccian, V. 2004. Early examples of resource-consciousness. Studia Logica 77: 81–86.
CrossRef
Google Scholar
Pambuccian, V. 2008. Axiomatizing geometric constructions. Journal of Applied Logic 6: 24–46.
CrossRef
Google Scholar
Panza, M. 2011. Rethinking geometrical exactness. Historia Mathematica 38: 42–95.
CrossRef
Google Scholar
von Plato, J. 1995. The axioms of constructive geometry. Annals of Pure and Applied Logic 76: 169–200.
CrossRef
Google Scholar
von Plato, J. 2006. Normal form and existence property for derivations in Heyting arithmetic. Acta Philosophica Fennica 78: 159–163.
Google Scholar
von Plato, J. 2007. In the shadows of the Löwenheim–Skolem theorem: early combinatorial analyses of mathematical proofs. The Bulletin of Symbolic Logic 13: 189–225.
CrossRef
Google Scholar
von Plato, J. 2010a. Combinatorial analysis of proofs in projective and affine geometry. Annals of Pure and Applied Logic 162: 144–161.
CrossRef
Google Scholar
von Plato, J. 2010b. Geometric proof theory of intuitionistic geometry. Workshop on constructive aspects of logic and mathematics, Kanazawa, 8–10 March 2010. <http://www.jaist.ac.jp/is/labs/ishihara-lab/wcalm2010/vonplato.pdf>
von Plato, J. 2013. Elements of logical reasoning. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Poincaré, H. 1902. La science et l’hypothèse, 1968. Paris: Flammarion.
Google Scholar
Prawitz, D. 1971. Ideas and results in proof theory. In Proceedings of the second Scandinavian logic symposium, J.E. Fenstad, 235–307. Amsterdam: North Holland.
Google Scholar
Proclus 1970. A commentary on the first book of Euclid’s elements, ed. G.R. Morrow. Princeton: Princeton University Press.
Google Scholar
Rathjen, M. 2005. The constructive Hilbert program and the limit of Martin-Löf type theory. Synthese 147: 81–120.
CrossRef
Google Scholar
Rybowicz, M. 2003. On the normalization of numbers and functions defined by radicals. Journal of Symbolic Computation 35: 651–672.
CrossRef
Google Scholar
Schroeder-Heister, P. 2006. Validity concepts in proof-theoretic semantics. Synthese 148: 525–571.
CrossRef
Google Scholar
Schroeder-Heister, P. 2014. Proof-theoretic semantics. In The Stanford encyclopedia of philosophy (Summer 2014 edition), ed. E.N. Zalta.
Google Scholar
Seeland, H. 1978. Algorithmische Theorien und konstruktive Geometrie. Stuttgart: Hochschulverlag.
Google Scholar
Sieg, W. 1994. Mechanical procedures and mathematical experiences. In Mathematics and mind, ed. A. George, 71–117. Oxford: Oxford University Press.
Google Scholar
Szczerba, L.W. 1986. Tarski and geometry. The Journal of Symbolic Logic 51: 907–912.
CrossRef
Google Scholar
Tarski, A. 1959. What is elementary geometry? In L. Henkin et al. (1959), 16–29.
Google Scholar
Tarski, A., and S. Givant. 1999. Tarski’s system of geometry. The Bulletin of System Logic 5: 175–214.
CrossRef
Google Scholar
Troelstra, A.S. 1991. History of constructivism in the twentieth century. ITLI Prepublication series, ML-91-05, University of Amsterdam. <http://www.illc.uva.nl/Research/Reports/ML-1991-05.text.pdf>
Troelstra, A.S., and D. van Dalen. 1988. Constructivism in mathematics: an introduction, vol. 1. Amsterdam: North Holland.
Google Scholar
Troelstra, A.S., and H. Schwichtenberg. 2000. Basic proof theory, 2nd ed. Cambridge: Cambridge University Press.
CrossRef
Google Scholar
Turing, A.M. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(s. 2): 230–265.
Google Scholar
Van Bendegem, J.P. 2010. Finitism in geometry. In The stanford encyclopedia of philosophy, ed. E.N. Zalta, Spring 2010 ed. <http://plato.stanford.edu/archives/spr2010/entries/geometry-finitism>
Venturi, G. 2011. Hilbert, completeness and geometry. Rivista Italiana di Filosofia Analitica Junior 2: 82–104.
Google Scholar
Vesley, R. 2000. Constructivity in geometry. History and Philosophy of Logic 20: 291–294.
CrossRef
Google Scholar
Weyl, H. 1918. Das Kontinuum: Kritischen Untersuchungen über die Grundlagen der Analysis. Leipzig: Veit & Co.
Google Scholar
Weyl, H. 1949. Philosophy of mathematics and natural science, English trans. O. Helmer. Princeton: Princeton University Press.
Google Scholar