Skip to main content

Decomposing Utility Functions in Bounded Max-Sum for Distributed Constraint Optimization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 8656)

Abstract

Bounded Max-Sum is a message-passing algorithm for solving Distributed Constraint Optimization Problems (DCOP) able to compute solutions with a guaranteed approximation ratio. In this paper we show that the introduction of an intermediate step that decomposes functions may significantly improve its accuracy. This is especially relevant in critical applications (e.g. automatic surveillance, disaster response scenarios) where the accuracy of solutions is of vital importance.

Keywords

  • Binary Function
  • Factor Graph
  • Pairwise Constraint
  • Link Density
  • Percentage Relative Error

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10428-7_47
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10428-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Trx. on Information Theory 46(2), 325–343 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Bowring, E., Pearce, J.P., Portway, C., Jain, M., Tambe, M.: On k-optimal distributed constraint optimization algorithms: new bounds and algorithms. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS (2), pp. 607–614. IFAAMAS (2008)

    Google Scholar 

  3. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. J. of the ACM 50(2), 107–153 (2003)

    CrossRef  MathSciNet  Google Scholar 

  4. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp. 639–646 (2008)

    Google Scholar 

  5. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combinatorial optimization in graphical models. In: IJCAI, pp. 2126–2132 (2011)

    Google Scholar 

  6. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140 (2010)

    Google Scholar 

  7. Koller, D., Friedman, N.: Probabilistic Graphical Models. The MIT Press (2009)

    Google Scholar 

  8. Larkin, D.: Approximate decomposition: A method for bounding and estimating probabilistic and deterministic queries. In: UAI, pp. 346–353 (2003)

    Google Scholar 

  9. Larrosa, J., Rollon, E.: Risk-neutral bounded max-sum for distributed constraint optimization. In: SAC, pp. 92–97 (2013)

    Google Scholar 

  10. Meiri, I., Pearl, J., Dechter, R.: Tree decomposition with applications to constraint processing. In: AAAI, pp. 10–16 (1990)

    Google Scholar 

  11. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed constraint optimization. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 624–632. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring, E.: Quality guarantees for region optimal dcop algorithms. In: AAMAS, pp. 133–140 (2011)

    Google Scholar 

  14. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring, E.: Reward-based region optimal quality guarantees. In: OPTMAS Workshop (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rollon, E., Larrosa, J. (2014). Decomposing Utility Functions in Bounded Max-Sum for Distributed Constraint Optimization. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)