Abstract
Bounded Max-Sum is a message-passing algorithm for solving Distributed Constraint Optimization Problems (DCOP) able to compute solutions with a guaranteed approximation ratio. In this paper we show that the introduction of an intermediate step that decomposes functions may significantly improve its accuracy. This is especially relevant in critical applications (e.g. automatic surveillance, disaster response scenarios) where the accuracy of solutions is of vital importance.
Keywords
- Binary Function
- Factor Graph
- Pairwise Constraint
- Link Density
- Percentage Relative Error
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Trx. on Information Theory 46(2), 325–343 (2000)
Bowring, E., Pearce, J.P., Portway, C., Jain, M., Tambe, M.: On k-optimal distributed constraint optimization algorithms: new bounds and algorithms. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS (2), pp. 607–614. IFAAMAS (2008)
Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. J. of the ACM 50(2), 107–153 (2003)
Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp. 639–646 (2008)
Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combinatorial optimization in graphical models. In: IJCAI, pp. 2126–2132 (2011)
Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140 (2010)
Koller, D., Friedman, N.: Probabilistic Graphical Models. The MIT Press (2009)
Larkin, D.: Approximate decomposition: A method for bounding and estimating probabilistic and deterministic queries. In: UAI, pp. 346–353 (2003)
Larrosa, J., Rollon, E.: Risk-neutral bounded max-sum for distributed constraint optimization. In: SAC, pp. 92–97 (2013)
Meiri, I., Pearl, J., Dechter, R.: Tree decomposition with applications to constraint processing. In: AAAI, pp. 10–16 (1990)
Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759 (2011)
Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed constraint optimization. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 624–632. Springer, Heidelberg (2012)
Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring, E.: Quality guarantees for region optimal dcop algorithms. In: AAMAS, pp. 133–140 (2011)
Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring, E.: Reward-based region optimal quality guarantees. In: OPTMAS Workshop (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Rollon, E., Larrosa, J. (2014). Decomposing Utility Functions in Bounded Max-Sum for Distributed Constraint Optimization. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-10428-7_47
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10427-0
Online ISBN: 978-3-319-10428-7
eBook Packages: Computer ScienceComputer Science (R0)