Incremental Cardinality Constraints for MaxSAT
Abstract
Maximum Satisfiability (MaxSAT) is an optimization variant of the Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a succession of SAT solver calls to reach an optimum solution making extensive use of cardinality constraints. Many of these algorithms are non-incremental in nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused from one iteration to another. In this paper, we exploit the knowledge acquired across iterations using novel schemes to use cardinality constraints in an incremental fashion. We integrate these schemes with several MaxSAT algorithms. Our experimental results show a significant performance boost for these algorithms as compared to their non-incremental counterparts. These results suggest that incremental cardinality constraints could be beneficial for other constraint solving domains.
Keywords
Conjunctive Normal Form Cardinality Constraint Unit Clause Conjunctive Normal Form Formula Relaxation VariablePreview
Unable to display preview. Download preview PDF.
References
- 1.Abío, I., Stuckey, P.J.: Conflict Directed Lazy Decomposition. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)Google Scholar
- 2.Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (Weighted) Partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg (2013)Google Scholar
- 3.Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. In: Kullmann (ed.) [30], pp. 427–440Google Scholar
- 4.Ansótegui, C., Bonet, M.L., Levy, J.: A New Algorithm for Weighted Partial MaxSAT. In: Fox, M., Poole, D. (eds.) AAAI Conference on Artificial Intelligence. AAAI Press (2010)Google Scholar
- 5.Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux Upgradeability Problems Using Boolean Optimization. In: Workshop on Logics for Component Configuration, pp. 11–22 (2010)Google Scholar
- 6.Asín, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Annals of Operations Research, 1–21 (2012)Google Scholar
- 7.Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality Networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)zbMATHMathSciNetGoogle Scholar
- 8.Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)Google Scholar
- 9.Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)Google Scholar
- 10.Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech. rep., Department of Computer Science, The University of Iowa (2010), www.SMT-LIB.org
- 11.Büttner, M., Rintanen, J.: Satisfiability Planning with Constraints on the Number of Actions. In: Biundo, S., Myers, K.L., Rajan, K. (eds.) International Conference on Automated Planning and Scheduling, pp. 292–299 (2005)Google Scholar
- 12.Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated Design Debugging With Maximum Satisfiability. IEEE Transactions on CAD of Integrated Circuits and Systems 29(11), 1804–1817 (2010)Google Scholar
- 13.Cheng, K.C.K., Yap, R.H.C.: Maintaining Generalized Arc Consistency on Ad-Hoc n-Ary Boolean Constraints. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 141, pp. 78–82. IOS Press (2006)Google Scholar
- 14.Cimatti, A., Sebastiani, R. (eds.): SAT 2012. LNCS, vol. 7317, pp. 2012–2015. Springer, Heidelberg (2012)zbMATHGoogle Scholar
- 15.Davies, J., Bacchus, F.: Exploiting the Power of mip Solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)Google Scholar
- 16.Davies, J., Bacchus, F.: Postponing Optimization to Speed Up MAXSAT Solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013)Google Scholar
- 17.Debruyne, R.: Arc-Consistency in Dynamic CSPs Is No More Prohibitive. In: International Conference on Tools with Artificial Intelligence, pp. 299–307. IEEE (1996)Google Scholar
- 18.Dechter, R., Dechter, A.: Belief Maintenance in Dynamic Constraint Networks. In: Shrobe, H.E., Mitchell, T.M., Smith, R.G. (eds.) AAAI Conference on Artificial Intelligence, pp. 37–42. AAAI Press / The MIT Press (1988)Google Scholar
- 19.Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)Google Scholar
- 20.Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)zbMATHGoogle Scholar
- 21.Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
- 22.Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science 89(4), 543–560 (2003)Google Scholar
- 23.Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)Google Scholar
- 24.Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.L.: Efficient and Accurate Haplotype Inference by Combining Parsimony and Pedigree Information. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 38–56. Springer, Heidelberg (2012)Google Scholar
- 25.Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Burgard, W., Roth, D. (eds.) AAAI Conference on Artificial Intelligence. AAAI Press (2011)Google Scholar
- 26.Hooker, J.N.: Solving the incremental satisfiability problem. Journal of Logic Programming 15(1&2), 177–186 (1993)zbMATHMathSciNetGoogle Scholar
- 27.Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Hall, M.W., Padua, D.A. (eds.) Programming Language Design and Implementation, pp. 437–446. ACM (2011)Google Scholar
- 28.Kadioglu, S., Malitsky, Y., Sellmann, M.: Non-Model-Based Search Guidance for Set Partitioning Problems. In: Hoffmann, J., Selman, B. (eds.) AAAI Conference on Artificial Intelligence. AAAI Press (2012)Google Scholar
- 29.Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 8, 95–100 (2012)MathSciNetGoogle Scholar
- 30.Kullmann, O. (ed.): SAT 2009. LNCS, vol. 5584. Springer, Heidelberg (2009)zbMATHGoogle Scholar
- 31.Lagerkvist, M.Z., Schulte, C.: Advisors for Incremental Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 409–422. Springer, Heidelberg (2007)Google Scholar
- 32.Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7(2-3), 59–66 (2010)Google Scholar
- 33.Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
- 34.Liffiton, M.H., Sakallah, K.A.: Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints. Journal Automated Reasoning 40(1), 1–33 (2008)zbMATHMathSciNetGoogle Scholar
- 35.Lonsing, F., Egly, U.: Incremental QBF Solving. Computing Research Repository - arXiv abs/1402.2410 (2014)Google Scholar
- 36.Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005)Google Scholar
- 37.Manolios, P., Papavasileiou, V.: Pseudo-Boolean Solving by incremental translation to SAT. In: Bjesse, P., Slobodová, A. (eds.) International Conference on Formal Methods in Computer-Aided Design, pp. 41–45. FMCAD Inc. (2011)Google Scholar
- 38.Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimization. In: Kullmann (ed.) [30], pp. 495–508Google Scholar
- 39.Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs using incremental QBF solving. In: Rosenstiel, W., Thiele, L. (eds.) Design, Automation, and Test in Europe Conference, pp. 623–628. IEEE (2012)Google Scholar
- 40.Marques-Silva, J., Planes, J.: On using unsatisfiability for solving Maximum Satisfiability. Tech. rep., Computing Research Repository, abs/0712.0097 (2007)Google Scholar
- 41.Martins, R., Manquinho, V., Lynce, I.: Parallel Search for Maximum Satisfiability. AI Communications 25(2), 75–95 (2012)MathSciNetGoogle Scholar
- 42.Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a Modular MaxSAT Solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)Google Scholar
- 43.Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetGoogle Scholar
- 44.Morgado, A., Heras, F., Marques-Silva, J.: Improvements to Core-Guided Binary Search for MaxSAT. In: Cimatti, Sebastiani (eds.) [14], pp. 284–297Google Scholar
- 45.Nadel, A., Ryvchin, V.: Efficient SAT Solving under Assumptions. In: Cimatti, Sebastiani (eds.) [14], pp. 242–255Google Scholar
- 46.Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)Google Scholar
- 47.Shtrichman, O.: Pruning Techniques for the SAT-Based Bounded Model Checking Problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer, Heidelberg (2001)Google Scholar
- 48.van Beek, P.: Backtracking Search Algorithms. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 4. Elsevier (2006)Google Scholar
- 49.van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, ch. 6. Elsevier (2006)Google Scholar
- 50.Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A New Incremental Satisfiability Engine. In: Design Automation Conference, pp. 542–545. ACM (2001)Google Scholar