The StockingCost Constraint

  • Vinasétan Ratheil Houndji
  • Pierre Schaus
  • Laurence Wolsey
  • Yves Deville
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8656)


Many production planning problems call for the minimization of stocking/storage costs. This paper introduces a new global constraint \(\texttt{StockingCost}([X_1,\ldots,X_n],[d_1,\ldots,d_n],H,c)\) that holds when each item X i is produced on or before its due date d i , the capacity c of the machine is respected, and H is an upper bound on the stocking cost. We propose a linear time algorithm to achieve bound consistency on the \(\texttt{StockingCost}\) constraint. On a version of the Discrete Lot Sizing Problem, we demonstrate experimentally the pruning and time efficiency of our algorithm compared to other state-of-the-art approaches.


Production Planning Discrete Lot Sizing Constraint Programming Global Constraint 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Data structures for Disjoint Sets. In: Introduction to Algorithms, ch. 21, 2nd edn., MIT Press, Cambridge (2001)Google Scholar
  2. 2.
    Drexl, A., Kimms, A.: Lot sizing and scheduling - survey and extensions. European Journal of Operational Research, 221–235 (1997)Google Scholar
  3. 3.
    Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Focacci, F., Lodi, A., Milano, M., Vigo, D.: Solving tsp through the integration of or and cp techniques. Electronic Notes in Discrete Mathematics 1, 13–25 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Jans, R., Degraeve, Z.: Modeling industrial lot sizing problems: A review. International Journal of Production Research (2006)Google Scholar
  6. 6.
    López-Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algorithm for bounds consistency of the alldifferent constraint. In: International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)Google Scholar
  7. 7.
    Pesant, G., Gendreau, M., Potvin, J.-Y., Rousseau, J.-M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transportation Science 32(1), 12–29 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pochet, Y., Wolsey, L.: Production Planning by Mixed Integer Programming. Springer (2005)Google Scholar
  9. 9.
    Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., Sadjad, S.B.S.: An efficient bounds consistency algorithm for the global cardinality constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 600–614. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Régin, J.-C.: Cost-based arc consistency for global cardinality constraints. Constraints 7(3-4), 387–405 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    OscaR Team. Oscar: Scala in or (2014),
  12. 12.
    Ullah, H., Parveen, S.: A literature review on inventory lot sizing problems. Global Journal of Researches in Engineering 10, 21–36 (2010)Google Scholar
  13. 13.
    van Hoeve, W.-J.: Over-constrained problems. In: Hybrid Optimization, pp. 191–225. Springer (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vinasétan Ratheil Houndji
    • 1
  • Pierre Schaus
    • 1
  • Laurence Wolsey
    • 1
  • Yves Deville
    • 1
  1. 1.Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations