Skip to main content

Description and Classification of Prominences

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Solar prominences are bright cloud-like structures when observed beyond the solar limb and they appear as dark filamentary objects which are termed filaments when seen against the solar disk. The aims of prominence classifications were from the start to establish references and frameworks for understanding the physical conditions for their formation and development through interplay with the solar magnetic environment. The multi-thermal nature of solar prominences became fully apparent once observations from space in UV, VUV, EUV and X-rays could be made. The cool prominence plasma is thermally shielded from the much hotter corona and supported in the field of gravity by small- and large-scale magnetic fields of the filament channels. High cadence, subarcsecond observing facilities on ground and in space have firmly proven the highly dynamic nature of solar prominences down to the smallest observed structural sizes of 100 km. The origin of the ubiquitous oscillations and flowing of the plasma over a variety of spatial and temporal scales, whether the cool dense plasma originates from below via levitation, injections by reconnection or results from condensation processes, are central issues in prominence research today. The unveiling of instabilities leading to prominences eruptions and Coronal Mass Ejections is another important challenge. The objective of this chapter is to review the main characteristics of various types of prominences and their associated magnetic environments, which will all be addressed in details in the following chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, K., Chae, J., Cao, W., & Goode, P. R. (2010). Patterns of flows in an intermediate prominence observed by Hinode. The Astrophysical Journal, 721, 74–79.

    ADS  Google Scholar 

  • Alexander, C. E., Walsh, R. W., Régnier, S., Cirtain, J., et al. (2013). Anti-parallel EUV flows observed along active region filament threads with Hi-C. The Astrophysical Journal, 775, L32–L38.

    ADS  Google Scholar 

  • Allen, U. A., Bagenal, F., & Hundhausen, A. J. (1998). Analysis of Hα observations of high altitude coronal condensations, new perspectives on solar prominences. In D. F. Webb, B. Schmieder, & D. M. Rust (Eds.), ASP conference series, IAU colloquium 167 (Vol. 150, p. 290).

    Google Scholar 

  • Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. (1999). A model for solar coronal mass ejections. The Astrophysical Journal, 510, 485–493.

    ADS  Google Scholar 

  • Antolin, P., & Rouppe van der Voort, L. (2012). Observing the fine structure of loops through high-resolution spectroscopic observations of coronal rain with the CRISP instrument at the Swedish solar telescope. The Astrophysical Journal, 745, 152–173.

    ADS  Google Scholar 

  • Anzer, U., Heinzel, P., & Fárnik, F. (2007). Prominences on the limb: Diagnostics with UV EUV lines and the soft X-ray continuum. Solar Physics, 242, 43–52.

    ADS  Google Scholar 

  • Aulanier, G. (2014). The physical mechanisms that initiate and drive solar eruptions. In IAU symposium (Vol. 300, pp. 184–196).

    Google Scholar 

  • Aulanier, G., & Demoulin, P. (1998). 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet. Astronomy and Astrophysics, 329, 1125–1137.

    ADS  Google Scholar 

  • Ballester, J. L. (2006). Seismology of prominence-fine structures: Observations and theory. Space Science Reviews, 122, 129–135.

    ADS  Google Scholar 

  • Ballester, J. L. (2014). Magnetism and solar prominences: MHD waves. In J.-C. Vial, & O. Engvold (Eds.), Solar Prominences, ASSL (Vol. 415, pp. 257–294). Springer.

    Google Scholar 

  • Banerjee, D., Erdélyi, R., Oliver, R., & O’Shea, E. (2007). Present and future observing trends in atmospheric magnetoseismology. Solar Physics, 246, 3–29.

    ADS  Google Scholar 

  • Berger, T. (2013). Solar prominence fine structure and dynamics. Nature of prominences and their role in space weather. In Proceedings of the IAU symposium (Vol. 300, pp. 15–29).

    Google Scholar 

  • Berger, T. E., Shine, R. A., Slater, G. L., et al. (2008). Hinode SOT observations of solar quiescent prominence dynamics. The Astrophysical Journal, 676, L89–L92.

    ADS  Google Scholar 

  • Berger, T. E., Slater, G., Hurlburt, N., et al. (2010). Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. The Astrophysical Journal, 716, 1288–1307.

    ADS  Google Scholar 

  • Berger, T., Testa, P., Hillier, A., et al. (2011). Magneto-thermal convection in solar prominences. Nature, 472, 197–200.

    ADS  Google Scholar 

  • Berger, T. E., Liu, W., & Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. The Astrophysical Journal, 758, L37.

    ADS  Google Scholar 

  • Bommier, V., Landi Degl’Innocenti, E., Leroy, J.-L., & Sahal-Brechot, S. (1994). Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and Hα lines. Solar Physics, 154, 231–260.

    ADS  Google Scholar 

  • Bruzek, A. (1952). Die Ausbreitung von “Euptionsstörungen”. Mit 2 Textabbildungen. Zeitschrift für Astrophysik, 31, 111.

    Google Scholar 

  • Chae, J., Wang, H., Qiu, J., Goode, P. R., Strous, L., & Yun, H. S. (2001). The formation of a prominence in active region NOAA 8668. I. SOHO/MDI observations of magnetic field evolution. The Astrophysical Journal, 560, 476–489.

    ADS  Google Scholar 

  • Chen, H., Jiang, Y., & Ma, S. (2009). An EUV jet and Hα filament eruption associated with flux cancelation in a decaying active region. Solar Physics, 255, 79–90.

    ADS  Google Scholar 

  • Cirigliano, D., Vial, J.-C., & Rovira, M. (2004). Prominence corona transition region plasma diagnostics from SOHO observations. Solar Physics, 223, 321–351.

    ADS  Google Scholar 

  • Cirtain, J. W., Golub, L., Winebarger, A. R., et al. (2013). Energy release in the solar corona from spatially resolved magnetic braids. Nature, 493, 501–503.

    ADS  Google Scholar 

  • D’Azambuja, L., & D’Azambuja, M. (1948). A comprehensive study of solar prominences and their evolution from spectroheliograms obtained at the observatory and from synoptic maps of the chromosphere published at the institution (Vol. 6, part 7). Ann. Obs. Paris-Meudon.

    Google Scholar 

  • de Jager, C. (1959). Structure and dynamics of the solar atmosphere. Handbuch der Physik, 52, 80.

    ADS  Google Scholar 

  • Denker, C., & Tritschler, A. (2009). Mini-filaments – small-scale analogues of solar eruptive events? In IAU symposium (Vol. 259, pp. 223–224).

    Google Scholar 

  • Deslandres, H. (1910). Recherches Sur l’Atmosphère Solaire; Photographies des Couches Gazeuses Supèriures (IV(I), pp. 1–139) Ann. Obs. Paris-Meudon.

    Google Scholar 

  • Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M., & Heinzel, P. (2012). Magnetic topology of bubbles incbrr quiescent prominences. The Astrophysical Journal, 761, 9–22.

    Google Scholar 

  • Dunn, R. (1960). Photometry of the solar chromosphere, Ph.D. Thesis, Harvard University.

    Google Scholar 

  • Engvold, O. (2008). Observational aspects of prominence oscillations. In IAU symposium (Vol. 247, pp. 152–157).

    Google Scholar 

  • Engvold, O., Tandberg-Hanssen, E., & Reichmann, E. (1985). Evidence for systematic flows in the transition region around prominences. Solar Physics, 96, 35–51.

    ADS  Google Scholar 

  • Engvold, O., Jakobsson, H., Tandberg-Hanssen, E., Gurman, J. B., & Moses, D. (2001). On the nature of prominence absorption and emission in highly ionized iron and in neutral hydrogen. Solar Physics, 202, 293–308.

    ADS  Google Scholar 

  • Feynman, J., & Martin, S. F. (1995). The initiation of coronal mass ejections by newly emerging magnetic flux. Journal of Geophysical Research, 100, 3355–3367.

    ADS  Google Scholar 

  • Forbes, T. G. (2000). A review on the genesis of coronal mass ejections. Journal of Geophysical Research, 105, 23153–23166.

    ADS  Google Scholar 

  • Foukal, P. (1971). Morphological relationships in the chromospheric Hα fine structure. Solar Physics, 19, 59–71.

    ADS  Google Scholar 

  • Fuller, J., Gibson, S. E., de Toma, G., & Fan, Y. (2008). Observing the unobservable? Modeling coronal cavity densities. The Astrophysical Journal, 678, 515–530.

    ADS  Google Scholar 

  • Gaizauskas, V. (1998). Filament channels: Essential ingredients for filament formation (review). In ASP conference series (Vol. 150, pp. 257–264).

    Google Scholar 

  • Gibson, S. (2014). Coronal cavities: Observations and implications for the magnetic environment of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences. Springer.

    Google Scholar 

  • Gibson, S. E., Kucera, T. A., Rastawicki, D., et al. (2010). Three-dimensional morphology of a coronal prominence cavity. The Astrophysical Journal, 724, 1133–1146.

    ADS  Google Scholar 

  • Habbal, S. R., Druckmüller, M., Morgan, H., et al. (2010). Total solar eclipse observations of hot prominence shrouds. The Astrophysical Journal, 719, 1362–1369.

    ADS  Google Scholar 

  • Haerendel, G., & Berger, T. (2011). A droplet model of quiescent prominence downflows. The Astrophysical Journal, 731, 82.

    ADS  Google Scholar 

  • Hale, G. E. (1903). The snow horizontal telescope. The Astrophysical Journal, 17, 314.

    ADS  Google Scholar 

  • Hale, G. E. (1929). The spectrohelioscope and its work. The Astrophysical Journal, 70, 265.

    ADS  Google Scholar 

  • Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.

    Google Scholar 

  • Heinzel, P., Schmieder, B., Fárník, F., et al. (2008). Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. The Astrophysical Journal, 686, 1383–1396.

    ADS  Google Scholar 

  • Hermans, L. M., & Martin, S. F. (1986). Small-scale eruptive filaments on the quiet sun. BAAS, 18, 991.

    ADS  Google Scholar 

  • Hillier, A., Isobe, H., Shibata, K., & Berger, T. (2012). Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. The Astrophysical Journal, 756, 110–120.

    ADS  Google Scholar 

  • Hirayama, T. (1985). Modern observations of solar prominences. Solar Physics, 100, 415–434.

    ADS  Google Scholar 

  • Hundhausen, A. (1999). Coronal mass ejections. In K. T. Strong, J. L. R. Saba, B. M. Haisch, & J. T. Schmelz (Eds.), The many faces of the sun: A summary of the results from NASA’s solar maximum mission (p. 143). New York: Springer.

    Google Scholar 

  • Isobe, H., & Tripathi, D. (2006). Large amplitude oscillation of a polar crown filament in the pre-eruption phase. Astronomy and Astrophysics, 449, L17–L20.

    ADS  Google Scholar 

  • Isobe, H., Tripathi, D., Asai, A., & Jain, R. (2007). Large-amplitude oscillation of an erupting filament as seen in EUV, Hα, and microwave observations. Solar Physics, 246, 89–99.

    ADS  Google Scholar 

  • Karpen, J. T., & Antiochos, S. K. (2008). Condensation formation by impulsive heating in prominences. The Astrophysical Journal, 676, 688.

    ADS  Google Scholar 

  • Kucera, T. A. (2014). Derivations and observations of prominence bulk motions and mass. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 77–99). Springer.

    Google Scholar 

  • Kucera, T. A., Gibson, S. E., Schmit, D. J., Landi, E., & Tripathi, D. (2012). Temperature and extreme-ultraviolet intensity in a coronal prominence cavity and streamer. The Astrophysical Journal, 757, 73.

    ADS  Google Scholar 

  • Labrosse, N. (2014). Derivation of major properties of prominences using non-LTE modeling. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 129–153). Springer.

    Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., & Kilper, G. (2010). Physics of solar prominences: I—Spectral diagnostics and non-LTE modelling. Space Science Reviews, 151, 243–332.

    ADS  Google Scholar 

  • Leroy, J.-L. (1981). Simultaneous measurement of the polarization in Hα and D3 prominence emissions. Solar Physics, 71, 285–297.

    ADS  Google Scholar 

  • Leroy, J. L. (1989). Observation of prominence magnetic fields. Astrophysics and Space Science Library, 150, 77.

    ADS  Google Scholar 

  • Li, X., Morgan, H., Leonard, D., & Jeska, L. (2012). A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. The Astrophysical Journal, 752, L22–L27.

    ADS  Google Scholar 

  • Lin, Y. (2000). Comparison of Hα and He II 304 Å brightness variation in solar prominences. MA Thesis, Institute of Theoretical Astrophysics, University of Oslo.

    Google Scholar 

  • Lin, Y. (2011). Filament thread-like structures and their small-amplitude oscillations (invited review). Space Science Reviews, 158, 237.

    ADS  Google Scholar 

  • Lin, Y., Engvold, O., & Wiik, J. E. (2003). Counterstreaming in a large polar crown filament. Solar Physics, 216, 109–120.

    ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E. (2005a). Thin threads of solar filaments. Solar Physics, 226, 431–451.

    Google Scholar 

  • Lin, Y., Wiik, J. E., Engvold, O., Rouppe van der Voort, L., & Frank, Z. A. (2005b). Solar filaments and photospheric network. Solar Physics, 227, 283–297.

    ADS  Google Scholar 

  • Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., & van Noort, M. (2007). Evidence of traveling waves in filament threads. Solar Physics, 246, 65–72.

    ADS  Google Scholar 

  • Lin, Y., Martin, S. F., & Engvold, O. (2008). Filament substructures and their interrelation. In ASP conference series (Vol. 383, p. 235).

    Google Scholar 

  • Lin, Y., Soler, R., Engvold, O., Ballester, J. L., Langangen, Ø., Oliver, R., & Rouppe van der Voort, L. H. M. (2009). Swaying threads of a solar filament. The Astrophysical Journal, 704, 870–876.

    ADS  Google Scholar 

  • Liu, R., Alexander, D., & Gilbert, H. R. (2009). Asymmetric eruptive filaments. The Astrophysical Journal, 691, 1079–1091.

    ADS  Google Scholar 

  • Liu, J., Zhou, Z., Wang, Y., Liu, R., et al. (2012a). Slow magnetoacoustic waves observed above a quiet-sun region in a dark cavity. The Astrophysical Journal, 758, L26–L32.

    ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012b). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal, 745, L21–L29.

    ADS  Google Scholar 

  • Liu, R., Kliem, B., Török, T., et al. (2012c). Slow rise and partial eruption of a double-decker filament. I. Observations and interpretation. The Astrophysical Journal, 756, 59–73.

    ADS  Google Scholar 

  • Lopez Ariste, A. (2014). Magnetometry of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 177–202). Springer.

    Google Scholar 

  • Mackay, D. (2014). Formation of large-scale pattern of filament channels and filaments. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 353–378). Springer.

    Google Scholar 

  • Mackay, D. H., Gaizauskas, V., & Yeates, A. R. (2008). Where do solar filaments form?: Consequences for theoretical models. Solar Physics, 248, 51–65.

    ADS  Google Scholar 

  • Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. (2010). Physics of solar prominences: II—Magnetic structure and dynamics. Space Science Reviews, 151, 333–399.

    ADS  Google Scholar 

  • Mariska, J. T., Doschek, G. A., & Feldman, U. (1979). Extreme-ultraviolet limb spectra of a prominence observed from SKYLAB. The Astrophysical Journal, 232, 929–939.

    ADS  Google Scholar 

  • Martin, S. F. (1998a). Conditions for the formation and maintenance of filaments (invited review). Solar Physics, 182, 107–137.

    ADS  Google Scholar 

  • Martin, S. F. (1998b). Filament Chirality: A Link Between Fine-Scale and Global Patterns (Review). ASP Conference Series, 150, 419–429.

    Google Scholar 

  • Martin, S. (2014). The magnetic field structure of prominences from direct and indirect observations. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 203–233). Springer.

    Google Scholar 

  • Martin, S. F., & Echols, C. R. (1994). An observational and conceptual model of the magnetic field of a filament. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism [NATO Advanced Research Workshop] (p. 339). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Martin, S. F., Livi, S. H. B., & Wang, J. (1985). The cancellation of magnetic flux. II – In a decaying active region. Australian Journal of Physics, 38, 929–959.

    ADS  Google Scholar 

  • Martin, S. F., Marquette, W. H., & Bilimoria, R. (1992). The solar cycle pattern in the direction of the magnetic field along the long axes of polar filaments, the solar cycle. In ASP conference series (Vol. 27, p. 53).

    Google Scholar 

  • Martin, S. F., Bilimoria, R., & Tracadas, P. W. (1994). Magnetic field configurations basic to filament channels and filaments. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism (p. 303). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Martin, S. F., Lin, Y., & Engvold, O. (2008). A method of resolving the 180-degree ambiguity by employing the chirality of solar features. Solar Physics, 250, 31–51.

    ADS  Google Scholar 

  • Martin, S. F., Panasenco, O., Agah, Y., Engvold, O., & Lin, Y. (2009). Relating a prominence observed from the solar optical telescope on the Hinode satellite to known 3-D structures of filaments. In ASP conference series (Vol. 415, p. 183).

    Google Scholar 

  • Martin, S. F., Panasenco, O., Berger, M. A., et al. (2012). The build-up to eruptive solar events viewed as the development of chiral systems. In ASP conference proceedings (Vol. 463, p. 157).

    Google Scholar 

  • Menzel, D. H., & Evans, J. W. (1953). Acad. Naz. Lincei. Conv. Volta, 11, 119.

    Google Scholar 

  • Molowny-Horas, R., Wiehr, E., Balthasar, H., Oliver, R., & Ballester, J. L. (1999). Prominence Doppler oscillations. JOSO annual report, 1998, pp. 126–127.

    Google Scholar 

  • Nagashima, K., Isobe, H., Yokoyama, T., Ishii, T. T., Okamoto, T. J., & Shibata, K. (2007). Triggering Mechanism for the Filament Eruption on 2005 September 13 in NOAA Active Region 10808. The Astrophysical Journal, 668, 533–545.

    ADS  Google Scholar 

  • Newton, H. W. (1935). Note on two allied types of chromospheric eruption. MNRAS, 95, 650.

    ADS  Google Scholar 

  • Okamoto, T. J., Nakai, H., Keiyama, A., Narukage, N., UeNo, S., Kitai, R., Kurokawa, H., & Shibata, K. (2004). Filament oscillations and Moreton waves associated with EIT waves. The Astrophysical Journal, 608, 1124–1132.

    ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Berger, T. E., et al. (2007). Coronal transverse magnetohydrodynamic waves in a solar prominence. Science, 318, 1577.

    ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., & Berger, T. E. (2010). A rising cool column as a signature of helical flux emergence and formation of prominence and coronal cavity. The Astrophysical Journal, 719, 583–590.

    ADS  Google Scholar 

  • Oliver, R., & Ballester, J. L. (2002). Oscillations in quiescent solar prominences observations and theory (invited review). Solar Physics, 206, 45–67.

    ADS  Google Scholar 

  • Paletou, F. (1997). On Hα source function vertical variations in filaments and bright rims visibility. Astronomy and Astrophysics, 317, 244–247.

    ADS  Google Scholar 

  • Panasenco, O., Martin, S. F., & Velli, M. (2014). Apparent solar tornado-like prominences. Solar Physics, 289, 603–622.

    ADS  Google Scholar 

  • Panesar, N. K., Innes, D. E., Tiwari, S. K., & Low, B. C. (2013). A solar tornado triggered by flares? Astronomy and Astrophysics, 549, 105–110.

    ADS  Google Scholar 

  • Parenti, S. (2014a). Solar prominences: Observations. Living Reviews in Solar Physics, 11, 1–88.

    Google Scholar 

  • Parenti, S. (2014b). Spectral diagnostics of cool and PCTR optically thin plasma. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 61–76). Springer.

    Google Scholar 

  • Parenti, S., & Vial, J.-C. (2007). Prominence and quiet-sun plasma parameters derived from FUV spectral emission. Astronomy and Astrophysics, 469, 1109–1115.

    ADS  Google Scholar 

  • Pécseli, H., & Engvold, O. (2000). Modeling of prominence threads in magnetic fields: Levitation by incompressible MHD waves. Solar Physics, 194, 73–86.

    ADS  Google Scholar 

  • Pettit, E. (1932). Characteristic features of solar prominences. The Astrophysical Journal, 76, 9.

    ADS  Google Scholar 

  • Pevtsov, A. A., & Neidig, D. (2005). Accumulation of filament material at the boundaries of supergranular cells. In K. Sankarasubramanian, M. Penn, & A. Pevtsov (Eds.), ASP conference series (Vol. 346, p. 219).

    Google Scholar 

  • Plocieniak, S., & Rompolt, B. (1973). Positions of filament feet in relation to the supergranular calcium network. Solar Physics, 29, 399–401.

    ADS  Google Scholar 

  • Poland, A. I., & Tandberg-Hanssen, E. (1983). Physical conditions in a quiescent prominence derived from UV spectra obtained with the UVSP instrument on the SMM. Solar Physics, 84, 63–70.

    ADS  Google Scholar 

  • Ramsey, H. E., & Smith, S. F. (1966). Flare-initiated filament oscillations. Astronomical Journal, 71, 197.

    ADS  Google Scholar 

  • Ryutova, M., Berger, T., Frank, Z., Tarbell, T., & Title, A. (2010). Observation of plasma instabilities in quiescent prominences. Solar Physics, 267, 75–94.

    ADS  Google Scholar 

  • Schmieder, B., Kucera, T. A., Knizhnik, K., Luna, M., Lopez-Ariste, A., & Toot, D. (2013). Propagating waves transverse to the magnetic field in a solar prominence. The Astrophysical Journal, 777, 108–119.

    ADS  Google Scholar 

  • Schmit, D. J., Gibson, S. E., Tomczyk, S., Reeves, K. K., Sterling, A. C., Brooks, D. H., Williams, D. R., & Tripathi, D. (2009). Large-scale flows in prominence cavities. The Astrophysical Journal, 700, L96–L98.

    ADS  Google Scholar 

  • Schrijver, C. J. (2001). Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE. Solar Physics, 198, 325–345.

    ADS  Google Scholar 

  • Sheeley, N. R., Jr., & Warren, H. P. (2012). Coronal cells. The Astrophysical Journal, 749, 40–54.

    ADS  Google Scholar 

  • Sheeley, N. R., Jr., Martin, S. F., Panasenco, O. & Warren, H. P. (2013). Using coronal cells to infer the magnetic field structure and chirality of filament channels. Astrophysical Journal, 772, 88–99.

    ADS  Google Scholar 

  • Simon, G. W., & Leighton, R. B. (1964). Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. The Astrophysical Journal, 140, 120.

    Google Scholar 

  • Smith, S. F. (1968). The formation, structure and changes in filaments in active regions. In IAU symposium (Vol. 35, p. 267).

    Google Scholar 

  • Soler, R., Oliver, R., & Ballester, J. L. (2014). The damping of transverse oscillations of prominence threads: A comparative study. In IAU symposium (Vol. 300, pp. 48–51).

    Google Scholar 

  • Steele, C. D. C., & Priest, E. R. (1992). A model for the fibril structure of normal-polarity solar prominences. Solar Physics, 140, 289–306.

    ADS  Google Scholar 

  • Stellmacher, G., & Wiehr, E. (1973). Observation of an instability in a “Quiescent” prominence. Astronomy and Astrophysics, 24, 321.

    ADS  Google Scholar 

  • Sterling, A. C., & Moore, R. L. (2004). Evidence for gradual external reconnection before explosive eruption of a solar filament. The Astrophysical Journal, 602, 1024–1036.

    ADS  Google Scholar 

  • Su, Y., Wang, T., Veronig, A., Temmer, M., & Gan, W. (2012). Solar magnetized “Tornadoes:” Relation to filaments. The Astrophysical Journal, 756, L41–L48.

    ADS  Google Scholar 

  • Tandberg-Hanssen, E. A. (1974). Solar prominences. Dordrecht: D. Reidel Publ. Co.

    Google Scholar 

  • Tandberg-Hanssen, E. (1995). The nature of solar prominences. In Astrophysics and Space Science Library 199. Kluwer Academic Publishers.

    Google Scholar 

  • Tang, F. (1987). Quiescent prominences – Where are they formed? Solar Physics, 107, 233–237.

    ADS  Google Scholar 

  • van Driel-Gesztelyi, L., & Culhane, J. L. (2009). Magnetic flux emergence, activity, eruptions and magnetic clouds: Following magnetic field from the sun to the heliosphere. Space Science Reviews, 144, 351–381.

    ADS  Google Scholar 

  • Vial, J. C. (1990). The prominence–corona interface. Lecture Notes in Physics, 363, 106–119.

    ADS  Google Scholar 

  • Vial, J.-C. (2014). Historical background and introduction. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 1–29). Springer.

    Google Scholar 

  • Waldmeier, M. (1970). The structure of the monochromatic corona in the surroundings of prominences. Solar Physics, 15, 167–175.

    ADS  Google Scholar 

  • Wang, Y.-M., & Sheeley, N. R., Jr. (1999). Filament eruptions near emerging bipoles. The Astrophysical Journal, 510, L157–L160.

    ADS  Google Scholar 

  • Wang, Y.-M., & Sheeley, N. R., Jr. (2002). Observations of core fallback during coronal mass ejections. The Astrophysical Journal, 567, 1211–1224.

    ADS  Google Scholar 

  • Wang, H., Chae, J., Gurman, J. B., & Kucera, T. A. (1998). Comparison of prominences in Hα and He II 304 Å. Solar Physics, 183, 91–96.

    ADS  Google Scholar 

  • Wang, J., Li, W., Denker, C., Lee, C., Wang, H., Goode, P. R., McAllister, A., & Martin, S. F. (2000). Minifilament eruption on the quiet sun. I. Observations at Hα central line. The Astrophysical Journal, 530, 1071–1084.

    ADS  Google Scholar 

  • Wedemeyer, S., Scullion, E., Rouppe van der Voort, L., Bosnjak, A., & Antolin, P. (2013). Are giant tornadoes the legs of solar prominences? The Astrophysical Journal, 774, 123–138.

    ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Scullion, E., Steiner, O., et al. (2012). Magnetic tornadoes as energy channels into the solar corona. Nature, 486, 505–508.

    ADS  Google Scholar 

  • Widing, K. G., Feldman, U., & Bhatia, A. K. (1986). The extreme-ultraviolet spectrum (300–630 A) of an erupting prominence observed from SKYLAB. The Astrophysical Journal, 308, 982–992.

    ADS  Google Scholar 

  • Wood, P., & Martens, P. (2003). Measurements of flux cancellation during filament formation. Solar Physics, 218, 123–135.

    ADS  Google Scholar 

  • Xu, Y., Jing, J., & Wang, H. (2010). Measurements of filament height in Hα and EUV 304 Å. Solar Physics, 264, 81–91.

    ADS  Google Scholar 

  • Zirin, H. (1966). The solar atmosphere. Waltham, MA: Blaisdell-Ginn.

    Google Scholar 

  • Zirin, H. (1988). Astrophysics of the sun. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zirin, H., & Tandberg-Hanssen, E. (1960). Physical conditions in limb flares and active prominences. IV. Comparison of active and quiescent prominences. The Astrophysical Journal, 131, 717.

    ADS  Google Scholar 

  • Zirker, J. B., & Koutchmy, S. (1990). Prominence fine structure. Solar Physics, 127, 109–118.

    ADS  Google Scholar 

  • Zirker, J. B., & Koutchmy, S. (1991). Prominence fine structure. II – Diagnostics. Solar Physics, 131, 107–118.

    ADS  Google Scholar 

  • Zirker, J. B., Engvold, O., & Martin, S. F. (1998). Counter-streaming gas flows in solar prominences as evidence for vertical magnetic fields. Nature, 396, 440–441.

    ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful for helpful discussions with Jean-Claude Vial and suggestions from Sara F. Martin and Jack B. Zirker in preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oddbjørn Engvold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engvold, O. (2015). Description and Classification of Prominences. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_2

Download citation

Publish with us

Policies and ethics